

Airworthiness Certification of Fighter Aircraft

Defence Research & Development Organisation Ministry of Defence, India Airworthiness Certification of Fighter Aircraft

AIRWORTHINESS CERTIFICATION OF FIGHTER AIRCRAFT

K Nagaraj

Former Chief Executive (Airworthiness) Centre for Military Airworthiness and Certification (CEMILAC) Bengaluru, India

Defence Research and Development Organisation Ministry of Defence, New Delhi – 110 011

2015

DRDO MONOGRAPHS/SPECIAL PUBLICATIONS SERIES AIRWORTHINESS CERTIFICATION OF FIGHTER AIRCRAFT

K Nagaraj

Series Editors

<i>Editor-in-Chief</i>	<i>Assoc. Editor-in-Chief</i>	<i>Editor</i>	<i>Asst. Editor</i>
Gopal Bhushan	Dr GS Mukherjee	Anitha Saravanan	Kavita Narwal
<i>Editorial Assistant</i> Gunjan Bakshi			

Cataloguing-in-Publication

Nagaraj, K

Airworthiness Certification of Fighter Aircraft

DRDO Monographs/Special Publications Series	
1. Fighter aircraft	2. Airworthiness
I. Title	II. Series
623.746.3:629.7.017	

© 2015, Defence Research & Development Organisation, New Delhi – 110 011.

ISBN 978-81-86514-84-9

All rights reserved. Except as permitted under the Indian Copyright Act 1957, no part of this publication may be reproduced, distributed or transmitted, stored in a database or a retrieval system, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher.

The views expressed in the book are those of the author only. The Editors or the Publisher do not assume responsibility for the statements/opinions expressed by the author.

Cover Design	Printing	Marketing
Anjan Kumar Das	SK Gupta	Rajpal Singh

Published by Director, DESIDOC, Metcalfe House, Delhi - 110 054.

Contents

Fore	word	xi
Prefe	ace	xiii
Ackr	ıowledgements	xv
Tern	ninology and Institutions	xvii
List	of Acronyms	xxi
Intro	oduction	xxix
CHA	APTER 1: TECHNOLOGY DEVELOPMENT	1
CHA	APTER 2: PROJECT INITIATION AND DEVELOPMENT	3
2.1	Feasibility Study	3
2.2	Project Definition	5
CHA	APTER 3: CONCEPTS OF AIRWORTHINESS CERTIFICATION	9
3.1	Introduction	9
3.2	Airworthiness Certification	9
CHA	APTER 4: AB-INITIO DESIGN, DEVELOPMENT, AND PRODUCTION	13
4.1	Introduction	13
4.2	Pre-requisites	13
4.3	Evaluation of Design	14
4.4	Review Systems	16
4.5	Methodology to Deal with Defects During Development	17
4.6	Transition from Development to Production	20
CHA	APTER 5: FACETS OF AIRCRAFT DESIGN	23
CHA	APTER 6: AERODYNAMICS	25
6.1	Air	25
6.2	5.2 Pressure	

6.3	Density	25
6.4	Airflow	27
6.5	Aircraft Aerodynamics	28
6.6	Aerodynamic Forces in Flight Manoeuvres	43
6.7	Stability and Handling of Aircraft	48
CHA	PTER 7: STRUCTURES	65
7.1	Configuration Study	65
7.2	Air Load Estimation and Wind Tunnel Tests	65
7.3	Structural Design and Analysis	67
7.4	Static Strength Analysis	67
7.5	Fuselage Analysis	67
7.6	Wing Analysis	68
7.7	Horizontal Tail Analysis	69
7.8	Vertical Tail Analysis	69
7.9	Validation of the Total Aircraft	78
7.10	Excitation Procedures	82
7.11	Aerodynamic Effects	87
CHA	PTER 8: ELECTRICAL SYSTEM	91
8.1	Overview of Aircraft Electrical System	91
8.2	Wiring	93
8.3	Electro Magnetic Compatibility	94
8.4	Electrical Power System Requirements	95
8.5	Load Characteristics	98
CHA	PTER 9: HYDRAULIC SYSTEM	101
CHA	PTER 10: FLIGHT CONTROL SYSTEM	107
10.1	Flight Control Actuation System	113
10.2	System Design	113
10.3	Electro-Hydraulic Servo-Valves	114
10.4	Direct Drive Valves	114
10.5	Comparison of EHSV with DDV Servo Actuators	114
10.6	Built-in Test/Redundancy Management	119
CHA	PTER 11: NAVIGATION SYSTEM	121
11.1	Doppler Navigation System	122
11.2	Very High Frequency Omni Range	126

11.3	Tactical Air Navigation System	128
11.4	Inertial Navigation Systems	128
11.5	Automatic Direction Finder	130
CHA	APTER 12: COMMUNICATION SYSTEM	131
12.1	Very High Frequency/Ultra High Frequency Technology	131
12.2	Radio Communication	131
12.3	Antennae	133
12.4	Sources of Noise	135
12.5	Reducing the Effects of Noise and Interference	136
CHA	PTER 13: LANDING GEAR SYSTEM	139
CHA	PTER 14: FUEL SYSTEM	145
CHA	APTER 15: OXYGEN SYSTEM	147
15.1	On-board Oxygen Generation Systems	149
CHA	PTER 16: ENVIRONMENTAL CONTROL SYSTEM	153
16.1	Bleed Subsystem	154
16.2	Air Conditioning Subsystem	154
16.3	Cabin Distribution Subsystem	155
CHA	PTER 17: BRAKE PARACHUTE SYSTEM	157
CHA	APTER 18: WEAPON SYSTEM	159
18.1	Fixed Gun Installation	160
18.2	Tests Required to Prove the Gun Installation	162
18.3	Integrated Weapon System	167
CHA	APTER 19: ESCAPE SYSTEM	169
19.1	Means of Escape	169
CHA	APTER 20: SOFTWARE SYSTEM	173
20.1	Software Development Process	173
20.2	Software Development Activities	174
20.3	Process Improvement Models	177
20.4	Formal Methods	178
CHA	APTER 21: PROPULSION SYSTEM	179
21.1	Thrust Augmentation	180

CHA	APTER 22: STANDARDS AND SPECIFICATIONS	183
22.1	Types of Specifications	183
22.2	Implementation of Specifications/Standards	185
CHA	APTER 23: DRAWINGS	187
23.1	Drawing Standard	187
23.2	Types of Drawings	190
23.3	Master Record System for Drawings	191
CHA	PTER 24: DESIGN EVALUATION FOR AIRWORTHINESS	193
24.1	Introduction	193
24.2	Aerodynamics	195
24.3	Electrical System	205
24.4	Systems Clearance	210
	Hydraulic System	221
24.6	Installation	242
	Ergonomics	248
	Aircraft Lighting	249
	Life Support Systems	249
) Avionics Architecture and Avionics Subsystems	252
	Armament/Stores Integration	254
	2 Safety Interlocks	255
24.13	3 Computer	257
CHA	APTER 25: SIMULATION	261
25.1	Types of Simulators	261
25.2	Techniques of Simulation	262
CHA	PTER 26: SAFETY ASSESSMENT OF AIRCRAFT SYSTEMS	265
26.1	Hazard Risk Assessment	267
26.2	Flight Worthiness Evaluations	267
26.3	Software Safety Assessment	268
	Software Development: Safety Assessment	270
26.5	New Hazards	271
CHA	APTER 27: GROUND TESTS	275
27.1	Aerodynamics	276
27.2	Armament Stores	280
27.3	Ground Firing Tests	283

CHA	PTER 28: DOCUMENTATION	289
28.1	General Requirements	289
28.2	Structures	290
28.3	Flight Control System	291
28.4	Propulsion and Propulsion Systems	293
28.5	Pilot-Vehicle Interface	294
28.6	Avionics	295
28.7	Electrical System	296
28.8	Computer and Software	297
28.9	Armament Stores	298
CHA	PTER 29: FLIGHT CLEARANCE CERTIFICATE	301
29.1	Introduction	301
29.2	Standard of Preparation of Aircraft	302
CHA	PTER 30: FLIGHT TESTS	307
30.1	Flight Test Instrumentation	307
30.2	Flight Tests	308
30.3	Evaluation of Test Results and Acceptance	310
CHA	PTER 31: RELEASE TO SERVICE	317
CHA	PTER 32: CONTINUED AIRWORTHINESS	319
32.1	Modifications	320
32.2	Aircraft Level Aspects	323
32.3	Weapon System Augmentation	324
32.4	Licence-Built Aircraft	328
CHA	PTER 33: INCIDENTS, DEFECTS, AND ACCIDENT INVESTIGATION	331
33.1	Aircraft Accidents	331
CHA	PTER 34: INDIGENOUS DEVELOPMENT	335
34.1	Items Having Licence Agreement	336
34.2	Approval of Non-Critical Items	336
34.3	Consumables: Approval of Fuel, Oil, and Lubricants	339
CHA	PTER 35: LIST OF DOS AND DON'TS	343
35.1	Dos	343
35.2	Don'ts	345

CHAPTER 36: CERTIFICATION IN FOREIGN COUNTRIES	
36.1 United States of America	348
36.2 United Kingdom	348
36.3 France	349
36.4 Russia	350
36.5 Conclusions	350
List of References	353
Index	363

Preface

This monograph is written for use by students pursuing the aeronautical engineering degree course; fresh entrants into the certification group; personnel engaged in the design, development of fighter aircraft with the objective of meeting the user's requirement; R&D scientists; certification groups; and user services.

Airworthiness means different things to different people. It is an essential prerequisite if the product has to be of utility to the user services for deployment in an operational scenario, in both military and civilian usage. However, unlike in the civilian sector, airworthiness certification has not got the recognition that is the due of such a vital and important subject in the military sphere.

This publication highlights the aspects of airworthiness certification that have to be assimilated into all facets of design, development, production and service life cycle of an aircraft and airborne store. It is of particular significance during design and development, since a product can only be as good as it has been designed, and all other factors will only help to achieve the capabilities built into the product by design. This monograph also attempts to bring out the fact that if corrective actions are required, they can be extremely difficult, if not impossible, to introduce and implement at later stages, due to the constraints of time and cost. Thus, the deficiency may have to be carried forward till the aircraft is phased out of service.

The certification personnel will have to meet several challenges in the concurrent design, development and certification scenario. This publication, therefore, deals in some depth with the design and design evaluation aspects. It also brings in the practical experience in aircraft system design of the author, who had the privilege of working for five years in the HF-24 design team of Dr Kurt Tank, the famous German designer, who set up a design team at the invitation of the then Prime Minister, Pandit Jawaharlal Nehru.

It is an extremely challenging and rewarding experience to be involved in an ab initio design and development project, and to process the activities of concurrent certification and accord flight clearance for the first flight and a block of initial flights. This task is all the more exciting if the aircraft incorporates state-of-the-art technologies for which certification standards are scant and have to be evolved as the work progresses. The author was privileged to shoulder this awesome responsibility and accord such a flight clearance for the Light Combat Aircraft (LCA).

The material presented in this monograph is, out of compulsion, only a small part of the mammoth activity that goes under the generic title of Airworthiness and Certification. The scope of activities and nuances involved are too vast and intensive to be consolidated in one publication. What has been presented, therefore, is of such a nature and depth that will enable the interested and the practitioner alike to grasp the overall approaches to aircraft design and airworthiness certification, and to benefit from the experience of the author in this field for over three-anda-half decades. The author will derive immense pleasure and feel rewarded if a large number in the aeronautical community read the book and benefit from the contents.

Bengaluru

K Nagaraj Former CE (Airworthiness) Centre for Military Airworthiness and Certification

Acknowledgements

A work of this scope and magnitude has to draw upon the knowledge, experience and expertise of several distinguished people, who have specialised and worked in the specific areas and on several projects. The author has been very fortunate in getting the cooperation, wholehearted support and generous help from Shri S Krishnasamy, former Chief Executive, CEMILAC, and Director, ADRDE, Agra, on aerodynamics and Late Shri VK Kalyanam, former Associate Director, CEMILAC, on aircraft structures. The author expresses sincere thanks to these gentlemen in this regard. The author wishes to place on record his thanks to Dr Raghothama Rao for his painstaking and meticulous effort in proofreading of the document.

The project has been made a reality by DESIDOC, DRDO, Delhi. The author sincerely thanks Shri Gopal Bhushan, Director, DESIDOC and gratefully acknowledges with thanks the efforts of the officers and staff of DESIDOC and in particular Smt Anitha Saravanan, Head, Monographs.

A publication of this magnitude and content requires a good deal of effort in typing, compilation, data collection, proofreading, countless number of revisions and other miscellaneous types of work. The author gratefully acknowledges with thanks the efforts of Shri Edwin Oliban, who has helped in preparing this document as per schedule and in an extremely presentable form.

K Nagaraj

List of Acronyms

ADFS	Automatic Direction Finder System
AFCS	Automatic Flight Control System
AGC	Automated Gain Control
AGS	Automatic Gain Control
AM	Amplitude Modulation(ed)
AMAGB	Aircraft-Mounted Accessory Gear Box
APC	Aircraft–Pilot Coupling
APU	Auxiliary Power Unit
ASI	Air Speed Indicator
ASR	Air Staff Requirements
AST	Air Staff Target
ASTE	Aircraft and System Testing Establishment
ATE	Automated Test Equipment
ATP	Acceptance Test Procedure
AVCS	Active Vibration Control System
BEL	Bharat Electronics Limited
BIT	Built-In Test
BLOS	Beyond-the-Line-of-Sight
BRD	Base Repair Depot
CAA	Civil Aviation Authority
CAD	Computer-Aided Draughting and Design
CAI	Compression After Impact
CAS	Calibrated Air Speed
CCDL	Cross Channel Data Link
ССМ	Close Combat Missile

CCS	Configuration Control System
CCV	Control Configured Vehicle
CD	Coefficient of Drag
CDMA	Code Division Multiple Access
CDR	(i) Crash Data Recorder; (ii) Critical Design Review
CFC	Carbon Fibre Composites
CFD	Computational Fluid Dynamics
CFRP	Carbon Fibre Reinforced Plastic
CEMILAC	Centre for Military Airworthiness and Certification
CG	Centre of Gravity
CIDS	Critical Item Development Specifications
CL	(i) Centre of Lift; (ii) Coefficient of Lift
CMMI	Capability Maturity Model Integration
COD	Certificate of Design
COTS	Commercially-off-the-shelf
СР	Centre of Pressure
CRE	Chief Resident Engineer
CRI	Chief Resident Inspector
CSCI	Computer Software Configuration Item
CSDO	Central Security Development Organisation
CSI	Critical Safety Items
CW	Continuous Wave
DDPIL	Design Development Production and Information of Electronic Equipment
DDPMAS	Design, Development and Production of Military Aircraft and Airborne Stores
DDV	Direct Drive Valves
DFCS	Digital Flight Control System
DGAQA	Directorate General Aeronautical Quality Assurance
DGCA	Director General, Civil Aviation
DFCC	Digital Flight Control Computer

List of Acronyms

DI	Defect Investigation
DME	Distance Measuring Equipment
DOD	Department of Defense
DOF	Degree of Freedom
DRDO	Defence Research and Development Organisation
DRI	Dynamic Responses Index
DS	Direct Sequence
ECS	Environmental Control System
EDM	Electro Discharge Machining
EHSV	Electro-Hydraulic Servo Valves
EMC	Electro Magnetic Compatibility
EMI	Electro Magnetic Interference
EMP	Electro Magnetic Pulse
EMRU	Electro Magnetic Release Unit
ENSIP	Engine Structural Integrity Programme
ERU	Ejector Release Unit
FAA	Federal Aviation Agency
FAR	Federal Aviation Regulations
FBW	Fly-By-Wire
FCA	Functional Configuration Audit
FCC	Flight Clearance Certificate
FCS	Flight Control System
FDR	Flight Data Recorder
FEM	Finite Element Analysis
FH	Frequency Hopping
FLIR	Forward Looking Infrared
FM	Frequency Modulation (ed)
FMCW	Frequency Modulated Continuous Wave
FMEA	Failure Mode and Effect Analysis
FMECA	Failure Mode, Effects, and Critical Analysis
FOC	Final Operational Clearance

FOD	Foreign Object Damage
FOL	Fuel Oil Lubricants
FOV	Field-of-View
FRACAS	Failure Report and Corrective Action System
FRF	Frequency Responses Functions
FRR	Flight Readiness Review
FTA	Fault Tree Analysis
FTI	Flight Test Instrumentation
GFRP	Glass Fibre Reinforced Plastic
GPS	Global Position System
GRT	Ground Resonance Test
GSQR	General Staff Quality Requirements
GVT	Ground Vibration Test
HAL	Hindustan Aeronautics Limited
HF	High Frequency
HSI	Hardware Software Integration
HT	Horizontal Tail
IAF	Indian Air Force
IAS	Indicated Air Speed
ICD	Interface Control Documents
ICs	Interface Controls
IEEE	Institution of Electrical and Electronic Engineers
IMU	Inertial Measurement Unit
IN	(i) Indian Navy; (ii) Inertial Navigation
IOC	Initial Operational Clearance
IVV	Independent Verification and Validation
JAA	Joint Airworthiness Agency
JAC	Joint Airworthiness Committee
JTRC	Joint Technical Requirements Committee
LCC	Local Concession Committee
LCSO	Electronic Components Standardisation Organisation

LEP	Laser Eye Protection
LES	Leading Edge Slat(s)
LLI	Lower Limit of Inflammability
LMC	Local Modification Committee
LMS	Liquid Measurement System
LOP	Line of Position
LOX	Liquid Oxygen
LRU	Line Replacable Unit
LSP	Limited Series Production
LTC	Local Technical Committee
LTCC	Local Type Certification Committee
LVDT	Linear Variable Displacement Transformer
MAG (Avn)	Maintenance Advisory Group (Aviation)
MC-CDMA	Multi-Carrier CDMA
MCV	Main Control Valve
MDC	Miniature Detonation Cord
MLPCB	Multi Layer Printed Circuit Board
MOD	Ministry of Defence
MPI	Mean Point of Impact
MRI	Master Resource Index
msec	Millisecond
MWL	Maximum Wear Limit
NASA	National Aeronautics and Space Administration
NASDO	Naval Aircraft Servicing Development Organisation
NBC	Nuclear-Biological-Chemical
NF	Notch Filter
NFTE	National Flight Test Engineers
NFTP	National Flight Test Pilots
NSQR	Naval Staff Quality Requirements
NTIS	National Technical Information Service
NVIS	Night Vision Imaging System

Airworthiness	Certification	of Fighter	Aircraft

NVM	Non-Volatile Memory
OBOGS	On-Board Oxygen Generating System
ODM	Operating Data Manual
OHP	Operational Height Programme
OLFRF	On-Line Frequency Response Functions
PCA	Physical Configuration Audit
РСВ	Printed Circuit Board
PDP	Project Definition Phase
PDR	Preliminary Design Review
PIDS	Prime Item Development Specifications
PIO	Pilot-Induced Oscillation
PLOC	Probability of Loss of Control
POR	Power Output Requirement
PPOL	Partial Pressure of Oxygen
PSA	Pressure Swing Adsorption
psi	Pounds Per Square Inch
PSU	Public Sector Undertaking
РТО	Power Takeoff
QR	Quality Requirements
RAT	Ram Air Turbine
RCMA	Regional Center for Military Airworthiness
RSD	Release to Service Document
RSS	Relaxed Static Stability
RTO	Reject Takeoff
RTRS	Rail Track Rocket Sledge
RTS	Real-Time Simulator
SA to RM	Scientific Advisor to Raksha Mantri
SAE	Society for Automotive Engineers
SATCOM	Satellite Communication
SB	Service Bulletin
SC	Structural Coupling

Airworthiness Certification of Fighter Aircraft

SCT	(Ground) Structural Coupling Test
SDD	Software Design Documents
SDIMP	Software Development Integrity Master Plan
SDLC	Software Development Life Cycle
SDP	Software Development Plans
SEPG	Software Engineering Process Group
SI	Servicing Instruction
SIT	System Integration Testing
SNR	Signal-to-Noise Ratio
SOF	Safety of Flight
SOP	Standard of Preparation
SOV	Solenoid Operated Valve
SOW	Statement of Work
SPICE	Software Process Improvement and Capability Determination
SR	Staff Requirements
SRR	System Requirement Review
SRS	(i) Standard Repair Scheme; (ii) Software Requirements
51(5	Specifications
STI	Special Technical Intructions
STLDD	Software Top-Level Design Documents
STTE	Specific Type Test Equipment
TACAN	Tactical Air Navigation System
TACSAT	Tactical Satellite
ТВО	Time Between Overhaul
TCs	Type Certificates
TEMP	Test and Evaluation Master Plan
TH	Time Hopping
TRANSEC	Transmission Security
TRU	Transformer Rectifier Unit
TTL	Total Technical Life
UHF	Ultra High Frequency

UON	Urgent Operating Notice
USAF	United States Air Force
USN	Urgent Servicing Notice
VCF	Vehicle Control Function
VHF	Very High Frequency
VOR	Very High Frequency Omni Range
VT	Vertical Tail
VTO	Visiting Technical Officer
XP	Extreme Programming

Introduction

The aeronautical industry took shape in India in 1940, with the establishment of Hindustan Aeronautics Limited (HAL) as a private enterprise by late Walchand Hirachand on land generously sanctioned by Shri Krishnarajendra Wodeyar, the then king of Mysore, for overhauling USAF aircraft. It was consolidated through takeover by the Government of India in 1942. The impetus for indigenous design and development was given by the HT 2 basic trainer project. Although this all-metal aircraft was primarily meant for use by the Indian Air Force, it was certified by DGCA, under the overall guidance of Dr S Neelakantan, since there was no Military Certification Agency in existence at that time. All design clearance activities were undertaken by HAL.

The Directorate of Technical Development and Production (Air) [DTD&P (Air)] was subsequently formed by the Ministry of Defence, Government of India, under the leadership of Dr S Neelakantan, to look after the Military Aircraft Airworthiness Certification aspects, including overseeing of company inspection. The first branch office of DTD&P (Air) was started in 1958 at Bengaluru within the premises of HAL, structured similar to airworthiness groups in the UK. The design and inspection related functions were separated in 1960, and entrusted to Chief Resident Engineer (CRE) and Chief Resident Inspector (CRI) respectively, in view of the increased aeronautical activities taken up in the country. CRE (Engines) was formed to look after the clearance activities of the engines, and brought out the requirements for re-type tests similar to UK procedures.

In 1968, the CREs were brought under the functional and administrative control of DRDO, reporting to SA to RM, through the Director of Aeronautics. The CRIs remained under DTD&P (Air), reporting to the Secretary, Defence Production. During this period, the Marut (HF 24) design activities, started under the leadership of Prof Kurt Tank, reached its peak. However, in-depth interactions/involvement of CREs for the design clearance activities were lacking. After the crash of HF 24 aircraft with reheat version of modified engine, the active participation of CRE (Aircraft) was considered essential and ensured with the concept of involvement in all activities of design and development, leading to clearance of the aircraft for development flights on a flight-by-flight basis as a mandatory requirement. These requirements were subsequently extended to other

DRDO Monographs/Special Publication Series

About the Book

This publication fills a very important niche in the broad spectrum of activities between design / development and release to service of a military fighter aircraft. That niche involves the expertise, knowledge, and ability to absorb and implement concepts / nuances of technologies adopted by the designers and certificated. The task is complex and demands a good grasp of the subject, considering the fact that a modern fighter aircraft encompasses a multitude of disciplines that have to be integrated into a system that will meet the requirements of safety and operational effectiveness. The role and responsibility of the certification authority are further exacerbated in the concurrent design and certification model adopted in India.

The text is the outcome of decades of hands-on experience of the author in the design evaluation of the aircraft and its systems for safety and performance parameters, and in implementing the process of airworthiness certification of a variety of fighter aircraft, engines, systems, software and hardware.

It would be impossible to incorporate, into a publication of this nature, all the details of various aspects involved in airworthiness certification of a fighter aircraft. However, an attempt has been made to bring out the knowledge required in the design of individual disciplines, evaluation techniques to be adopted, and the interactive nature of the work.

The text has been structured in such a fashion as to give to the casual reader a glimpse of airworthiness certification activities, and to the practitioner, a detailed exposure to this complex subject.

About the Author

Krishnamurthy Nagaraj graduated in electrical engineering from the University of Mysore in 1961, and thereafter obtained the Masters Degree in Avionics and Control Engineering from Cranfield Institute of Technology, UK. As designer in the Aircraft Design and Engineering department of Hindustan Aeronautics Limited, he worked in the HF 24 design group of Dr Kurt Tank. In 1969, he joined the Airworthiness Certification group of DRDO and rose to become the Chief Executive of CEMILAC. He has certified the mid-life upgrades on the Jaguar and Kiran aircraft, supported various other aircraft, and spurred the indigenous development of aircraft stores. He retired in 2001, after successfully certifying the Light Combat Aircraft for the first ten flights.

He was presented the Life Time Achievement Award in 2003–04 by the Society for Aerospace Quality and Reliability. In 2015, he was felicitated for contributing to the safety of the country by the Union Ministers for Defence and for Chemicals, Fertilisers & Pharmaceuticals at an event organised by the Adamya Chetana Foundation.

Price: INR ₹ 550 US \$60 UK £40

Defence Scientific Information and Documentation Centre Defence Research & Development Organisation Ministry of Defence, Metcalfe House, Delhi – 110 054, India