MICROWAVE REMOTE SENSING

OPN Calla

Defence Research & Development Organisation
Ministry of Defence
India
MICROWAVE REMOTE SENSING
MICROWAVE REMOTE SENSING

OPN Calla
Director
International Centre for Radio Science
Jodhpur

Defence Research & Development Organisation
Ministry of Defence
New Delhi – 110 105
2009
Contents

Preface v
Acknowledgements vii

CHAPTER 1: INTRODUCTION 1
1.1 Introduction 1
1.2 Electromagnetic Spectrum 2
1.3 Unique Capabilities 6
 1.3.1 All Weather Penetration Capability 6
 1.3.2 Day and Night Penetration Capability 6
 1.3.3 Penetration Through Vegetation and Soil 7
 1.3.4 Sensitivity to Moisture 7
1.4 Microwave Remote Sensing 7
 1.4.1 Passive Microwave Remote Sensing 9
 1.4.2 Active Microwave Remote Sensing 9
References

CHAPTER 2: STATUS OF MICROWAVE REMOTE SENSING 13
2.1 Microwave Remote Sensing: Status in India 13
 2.1.1 Sensors Development 13
 2.1.2 Data Products and Software Generation 17
 2.1.3 Utilisation of Microwave Remote Sensing Data 17
2.2 Microwave Remote Sensing: Global Status 20
 2.2.1 Space Missions Related to Microwave Remote Sensing 25
2.3 Institutions Engaged in Microwave Remote Sensing in India 31
 2.3.1 International Centre for Radio Science, Jodhpur 31
 2.3.2 Jawaharlal Nehru University, New Delhi 32
 2.3.3 Gujarat University, Ahmedabad 32
 2.3.4 Banaras Hindu University, Varanasi 32
 2.3.5 Regional Remote Sensing Service Centers 32
 2.3.6 National Remote Sensing Agency, Hyderabad 32
 2.3.7 Indian Institute of Technology Bombay, Mumbai 33
CHAPTER 3: DIELECTRIC PROPERTIES OF NATURAL EARTH MATERIALS AT MICROWAVE FREQUENCIES

3.1 Introduction
3.2 Water
 3.2.1 Water Molecules
 3.2.2 Dielectric Nature of Water
 3.2.3 Relaxation Time
 3.2.4 Saline Water
3.3 Snow and Ice
 3.3.1 Snow
 3.3.2 Ice
3.4 Soil and Its Properties
 3.4.1 Soil Profile
 3.4.2 Composition of Soil
 3.4.3 Physical Properties of Soil
 3.4.4 Wet Soil
 3.4.5 Oven-dried Soil
 3.4.6 Per cent Water Calculation
3.5 Dielectrics
 3.5.1 Complex Permittivity
 3.5.2 Mathematical Analysis for Complex Permittivity
 3.5.3 Loss Tangent
 3.5.4 Dielectric Constant
 3.5.5 Measurement of Dielectric Constant

References

CHAPTER 4: PASSIVE MICROWAVE REMOTE SENSING

4.1 Radiometer System
 4.1.1 Power Temperature Correspondence
4.2 Types of Radiometer Systems
 4.2.1 Total-power Radiometer System
 4.2.2 Dicke Radiometer System
 4.2.3 Noise-adding Radiometer System
4.3 Radiometric Antennas
 4.3.1 Pyramidal Horn Antennas
 4.3.2 Corrugated Horn Antennas
4.4 Design of Total-power Radiometer System
CHAPTER 5: ACTIVE MICROWAVE REMOTE SENSING

5.1 Introduction
5.1.1 Surface Scattering
5.1.2 Volume Scattering
5.2 Nature of Surface Scattering
5.3 Surface Parameter
5.3.1 Standard Deviation of Surface Height
5.3.2 Surface Correlation Length
5.4 Random Surface Scattering
5.4.1 General Behaviour of a Random Surface
5.5 Nature of Volume Scattering
5.6 Radar Equation
5.7 Received Power and Scattering Coefficient
5.8 Recovery of Scattering Coefficient from Average Power Measurement
5.9 Scattering Coefficient
5.10 Microwave Scattering Models
5.10.1 Geometric Optic Model
5.10.2 Perturbation Model
5.11 Scattering from Various Surfaces
5.11.1 Scattering from Undulating Surface
5.11.2 Scattering from Slightly Rough Surface
5.12 Scatterometers
5.12.1 Ground-based Scatterometer
5.13 Measurement of Scattering Coefficient
5.13.1 Network Analyser Method
5.13.2 Bistatic Method
5.14 Calibration of Scatterometer
5.14.1 Internal Calibration
5.14.2 External Calibration
5.15 Measurement Precision
5.16 Calibration Targets
5.16.1 Flat Rectangular Plate
5.16.2 Flat Circular Plate
5.16.3 Sphere
5.16.4 Corner Reflector
5.16.5 Luneberg Lens
5.16.6 Calibration Techniques

References
PREFACE

The radio frequency spectrum is divided into different regions known as High Frequency, Very High Frequency, Ultra High Frequency, SHF and also in microwave, millimeter waves, sub-millimeter waves, etc. The frequency range from 3 GHz to 30 GHz is known as microwaves and millimeter waves range from 30 GHz to 300 GHz. This part of radio spectrum has different applications. These are in (a) communication, (b) remote sensing, (c) medical, and (d) industries. The choice of the frequency depends upon the type of application. In this monograph, the remote sensing applications of the microwaves have been dealt with.

The unique capabilities of microwaves like all weather, day and night, sensitivity to soil moisture and ability to penetrate soil and vegetation etc., make the microwave remote sensing capable of having stand-alone application in some areas of oceanography, land and atomistic applications. For other applications, microwave remote sensing complements as well as supplements other techniques of remote sensing.

The fundamental parameter for microwave remote sensing is the dielectric constant of the material on which other electrical parameters like emissivity and scattering coefficient depend. The information about dielectric constant, emissivity, and scattering coefficient is obtained by measurement of these parameters as well as by estimation using the theoretical models. For microwave remote sensing, the knowledge about these three electrical parameters of the target material is extremely important.

The designing of sensors for microwave remote sensing depends on the emissivity for passive sensors, and scattering coefficient for active sensors. The passive sensors include radiometers, both imaging and non-imaging types. The active sensors are imaging radar, altimeter, and scatterometer. The knowledge of sensors, platform, data products, and applications of microwave remote sensing will provide great inputs for national development. This monograph will serve to those who will be interested in microwave remote sensing.

February 2009

OPN Calla

Director, International Centre for Radio Science
ACKNOWLEDGEMENTS

At the outset I would like to thank Director, DESIDOC for giving opportunity to ICRS for preparing a monograph on Microwave Remote Sensing. This monograph reflects the contribution of many scientists.

The material was collected, collated, and arranged into chapters and into headings, subheadings with each chapter for logical flow of the material and chapters were written and rewritten till it took a final shape. The author gratefully acknowledges Mr Rajesh Vyas who helped in editing the monograph, Mr Dinesh Bohra, and Mr Sanjeev K Mishra and others who had helped in preparation of the monograph.

The valuable help of Mr Pradeep Mathur, Mr Vikas Parihar, Mr Vinod Panwar, Ms Uttra Purohit and Mr Hari Singh in preparation of this monograph is gratefully acknowledged.

OPN Calla
Chapter 1

Introduction to Microwave Remote Sensing

1.1 INTRODUCTION

Remote sensing has diverse applications and it has been identified as a technique with good potential to help the nation’s economic growth and solve some of its problems. These include better management of natural resources through wasteland mapping, identifying flood-prone areas, water in catchments areas, assessment of situation of reservoirs, estimating forest area, and prediction of crop yield and scarcity of resources etc. The electromagnetic spectrum with different wavelength bands has applications in diverse areas. With increase in demand for natural resources, non-availability causes scarcity and one has to identify the factors behind these. For this, the conventional methods are not adequate, remote sensing can play an important role in solving these problems.

Remote sensing can be applied in areas like prediction of climatic conditions, rainfall, cloud cover, etc., and to help identify the areas covered by clouds, and other physical parameters. In cloud covered areas, i.e., during kharif season when crops get affected and yield prediction of wheat is difficult, and on crops like groundnuts, coffee, tea etc., which require high rainfall remote sensing can play a vital role. During rainy season, another area of concern is flood. Flood wreck havoc for many years. Movement of clouds could not be predicted as the clouds restrict the observation by conventional methods. Observation is not possible during night so one needs sensors which can work in night as well as in cloud covered areas.

1.2 ELECTROMAGNETIC SPECTRUM

The applications of remote sensing depend on the choice of frequency. The Radio Regulations of International Telecommunication Union limit the term radiowaves to electromagnetic waves of frequencies arbitrarily lower than 3000 GHz. For both active and passive microwave remote sensing, different parts of radio spectrum is used. Figure 1.1 gives the electromagnetic spectrum.
The Table 1.1 gives the radio spectrum starting from Extremely Low Frequency (ELF) to Extremely High Frequency (EHF) and from myriametric waves to sub-millimeter waves. This spectrum extends from 30 GHz to 3000 GHz. Different portions of radio spectrum have different applications.

The microwave spectrum is from 0.3 GHz to 30 GHz and millimeter wave spectrum ranges from 30 GHz to 300 GHz, the sub-millimeter wave spectrum is from 300 GHz to 3000 GHz. For utilisation of these spectra for various applications, it is split into different bands.

The nomenclature of the bands with frequencies is given in Table 1.2 and the nomenclature for bands adopted by US Military in 1970 is given in Table 1.3.

<table>
<thead>
<tr>
<th>Frequency bands</th>
<th>Wavelength</th>
<th>Descriptive designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>30–300 Hz</td>
<td>1000–10000 km</td>
<td>ELF</td>
</tr>
<tr>
<td>3–30 kHz</td>
<td>10–100 km</td>
<td>Myriametric waves–VLF</td>
</tr>
<tr>
<td>30–300 kHz</td>
<td>1–10 km</td>
<td>Kilometric waves–LF</td>
</tr>
<tr>
<td>300–3000 kHz</td>
<td>100–1000 m</td>
<td>Hectrometric waves–MF</td>
</tr>
<tr>
<td>3–30 MHz</td>
<td>10–100 m</td>
<td>Decametric waves–HF</td>
</tr>
<tr>
<td>30–300 MHz</td>
<td>1–10 m</td>
<td>Metric waves–VHF</td>
</tr>
<tr>
<td>300–3000 MHz</td>
<td>10–100 cm</td>
<td>Decimetric waves–UHF</td>
</tr>
<tr>
<td>3–30 GHz</td>
<td>1–10 cm</td>
<td>Centimetric waves–SHF</td>
</tr>
<tr>
<td>30–300 GHz</td>
<td>1–10 mm</td>
<td>Millimetric waves–EHF</td>
</tr>
<tr>
<td>300–3000 GHz</td>
<td>0.1–1 mm</td>
<td>Sub-millimetric waves</td>
</tr>
</tbody>
</table>
About the Author

Prof OPN Calla, presently working as Director, International Centre for Radio Science, completed his BE and ME from Rajasthan University. He started his career in 1962 from Atomic Energy Establishment and INCBSPAR where he was involved in R&D activity. In 1970, he was appointed as Head, Electronic Division of Microwave Antenna System Engineering Group (MASEG) and Secretary, MASEG. He joined Indian Space Research Organisation (ISRO) in 1972 where he served in various capacities such as Head, Microwave Division, Chairman, Communications Area of Space Application Centre, and Principal Investigator for 13/18 GHz Millimeter Wave Propagation Studies using ATS-6 satellite.

As Principal Scientist, he was responsible for development of Satellite Microwave Radiometer, one of the primary payloads of Bhaskara-I & II Satellites. He was Project Director of various prestigious projects like Satellite Telecommunications Experiment Project using Symphonic satellite, UNDP/ITU Projects of ISRO. This project included propagation study at frequencies above 10 GHz, and facility augmentation of Space Applications Centre.

During his tenure, he organised and presided over many conferences of international and national repute. He has published more than 200 papers in national/international journals on satellite communications, microwave remote sensing, delivered invited papers/lectures, and also wrote six books.

About the Book

Microwave Remote Sensing deals with the applications of Microwave Remote Sensing. The monograph describes the unique properties of microwaves which enable stand-alone applications in Oceanography, Topography, and Atomistic fields. For achieving optimum results, the theoretical principles and parameters like emissivity and scattering coefficient and dielectric constant are described.

The designing of sensors, their types, and platforms used for remote sensing are described. A detailed information about radiometers is given under passive sensors and radar altimeter, and scatterometer is given under active sensors with their operational as well as technical details. On the whole, the monograph would prove useful for students of microwave remote sensing.

Defence Scientific Information and Documentation Centre
Defence Research & Development Organisation
Ministry of Defence, Metcalfe House, Delhi - 110054
India

Price: Rs 275
US $ 35
UK £ 25