

Solid Propellant Chemistry

Condensed Phase Behaviour of Ammonium Perchlorate-Based Solid Propellants

K Kishore K Sridhara

SOLID PROPELLANT CHEMISTRY

Condensed Phase Behaviour of Ammonium Perchlorate-Based Solid Propellants

SOLID PROPELLANT CHEMISTRY

Condensed Phase Behaviour of Ammonium Perchlorate-Based Solid Propellants

K Kishore & K Sridhara

Foreword by

Dr APJ ABDUL KALAM

Scientific Adviser to Raksha Mantri

DEFENCE RESEARCH & DEVELOPMENT ORGANISATION MINISTRY OF DEFENCE NEW DELHI-110 011 1999 DRDO Monographs/Special Publications Series

SOLID PROPELLANT CHEMISTRY: CONDENSED PHASE BEHAVIOUR OF AMMONIUM PERCHLORATE-BASED SOLID PROPELLANTS

K Kishore & K Sridhara

Series Editors

Editor-in-Chief	Associate Editor-in-Chief	Associate Editor
SS Murthy	M Singh	Ashok Kumar
<i>Editor</i> DS Bedi	Asst Editor A. Saravanan	
Production		
Printing	Cover Design	Marketing
SB Gupta	SK Saxena	RK Dua

© 1999, Defence Scientific Information & Documentation Centre (DESIDOC), Defence R&D Organisation, Delhi-110 054.

All rights reserved. Except as permitted under the Indian Copyright Act 1957, no part of this publication may be reproduced, distributed or transmitted, stored in a database or a retrieval system, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

The views expressed in the book are those of the author only. The editors or publisher do not assume responsibility for the statements/ opinions expressed by the author.

ISBN: 81-86514-02-6

Printed and published by Director, DESIDOC, Metcalfe House, Delhi-110 054.

CONTENTS

Foreword	d	xi
Preface		xiii
CHAPTE	R 1	
INTROD	UCTION	1
CHAPTE	R 2	
COMBUS	STION OF COMPOSITE SOLID PROPELLANTS	7
2.1	Determination of Burning Rate	7
2.2	Influence of Pressure on the Burning Rate of CSP	9
2.2.1	Combustion Behaviour of CSP in Different Pressure Domains	14
2.2.1.1	Low Pressure Domain (<1 atm)	14
2.2.1.2	Moderate Pressure Domain (1–100 atm)	14
2.2.1.3	High Pressure Domain (>100 atm)	14
2.2.2	Surface Heterogeneity and Thermal Decomposition of CSP	15
2.3	Influence of Temperature on Burning Rate of CSP	17
2.3.1	Basic Analysis	17
2.3.2	Initial Temperature Effect and Condensed Phase Considerations	18
CHAPTE	R 3	
	ATION, THERMAL DECOMPOSITION & RATION BEHAVIOUR OF AMMONIUM ORATE	31
3.1	An Overview	31
3.1.1	Physical Properties of Ammonium Perchlorate	32
3.2	Sublimation Features of Ammonium Perchlorate	34
3.2.1	Enthalpy	35
3.2.2	Activation Energy	36
3.3	Decomposition of Ammonium Perchlorate	36

(viii)

3.3.1	Enthalpy	40
3.3.2	Activation Energy	40
3.3.3	Mechanism of Ammonium Perchlorate Decomposition	
3.3.3.1	Proton Transfer Mechanism	41
3.3.3.2	Electron Transfer Mechanism	
3.3.3.3	Mechanism via Formation of Nitryl Perchlorate Intermediate	
3.3.4	Stoichiometry of Ammonium Perchlorate Decomposition	45
3.3.5	Effect of Pressure on Thermal Decomposition of Ammonium Perchlorate	46
3.4	Salient Features of Ammonium Perchlorate Deflagration	46
3.4.1	Condensed Phase Characteristics during Ammonium Perchlorate Deflagration	47
3.4.2	Chemical Reactions in the Gas Phase	49
3.4.3	Influence of Pressure on Ammonium Perchlorate Deflagration	
3.4.4	Melting of Ammonium Perchlorate	52
3.4.5	Temperature at the Burning Surface	54
3.4.6	Temperature of Ammonium Perchlorate Flame	54
3.5	Influence of Initial Temperature T_o on Deflagration of Ammonium Perchlorate	55
3.6	Modelling Studies	63
CHAPTEI	R 4	
	F POLYMERIC FUEL-CUM-BINDER DURING RNING OF COMPOSITE SOLID PROPELLANTS	71
4.1	An Overview	71
4.2	Salient Features of Fuel Binder Pyrolysis	76
4.2.1	Activation Energy	82
4.3	Role of Fuel Binder in Composite Solid Propellant Combustion	85

4.3.1	Condensed Phase Behaviour of Fuel Binders	85
4.3.1.1	Influence of Microscopic Features of the Fuel on the Burning Rate of Model Composite Mixtures	87
4.3.2	Gas Phase Behaviour of Fuel Binders	91
4.4	Modelling Studies and the Role of Fuel Binder	92
4.4.1	Condensed Phase Considerations	92
4.4.2	Gas Phase Considerations	96
4.5	5 Effect of Fuel Binder Structure	
CHAPTE	R 5	
	OF BURNING RATE MODIFIERS ON COMPOSITE PROPELLANTS & THEIR COMPONENTS	105
5.1	An Overview	105
5.2	Effect of Catalysts/Inhibitors on Decomposition and Deflagration of Ammonium Perchlorate	106
5.3	Catalyzed Decomposition and Combustion of Binders	109
5.4	Catalyzed Decomposition & Combustion of CSP	110
5.4.1	Effect of TMO	115
5.4.2	Effect of Copper Chromite and Copper Chromate	116
5.4.3	Effect of Iron Oxide	116
5.5	Ferrocene and its Derivatives	117
5.5.1	Prognosticative Capability of Ferrocene Catalysts	122
CHAPTE	R 6	
AGEING	OF COMPOSITE SOLID PROPELLANTS	127
6.1	An Overview	127
6.2	Changes in Weight Loss	128
6.3	Changes in Mechanical Properties	128
6.4	Ignition Temperature of the Binder and CSP	130
6.5	Changes in Thermal Decomposition Rate and Burning Rate	131
6.6	Mechanism of Ageing	131
6.7	Kinetics of Ageing Process	135

6.8	Estimation of Safe-Life	136
6.9	Activation Energy	137
6.10	Effect of Oxidizer Loading	138
6.11	Effect of Additives on Ageing	138
6.12	Effect of Humidity on Ageing	
CHAPTI	ER 7	
	ERFORMANCE BINDERS, OXIDIZERS ROPELLANTS	143
7.1	An Overview	143
7.2	Glycidyl Azide Polymer (GAP)	144
7.2.1	Copolymers of GAP	147
7.2.2	Thermal Decomposition of GAP	149
7.2.3	Combustion of GAP	153
7.2.4	GAP Propellants	153
7.2.5	Hazard Characteristics	158
7.3	Poly (3-Azido Methyl, 3-Methyl Oxetane) (AMMO)	158
7.3.1	AMMO/AP Propellant	160
7.4	Poly [3, 3 Bis (Azido Methyl) Oxetane] (BAMO)	160
7.4.1	BAMO-NMMO (3-Nitromethyl-3 Methyloxetane) Copolymer	162
7.4.2	BAMO-THF (Tetrahydrofuran) Copolymer	167
7.5	Ammonium Nitronitramide or Ammonium Dinitramide	168
7.6	Hydrazinium Nitroformate (HNF)	171
CHAPTI	ER 8	
FUTUR	E DIRECTIONS	173
CHAPTI	ER 9	
REFER	ENCES	177
Index		233

PREFACE

There are about half a dozen books dealing with propellant chemistry but much of the information available therein is rather old and none of them discusses the condensed phase combustion chemistry of solid propellants in detail. The present monograph is the first of its kind in which the material accumulated over several decades has been sifted from literature and articulated to highlight the importance of condensed phase chemistry which seems to be vital for understading the key phenomena like burning rate modulation and ageing. Besides, the subtle roles of binders, oxidizers and catalysts have been brought out. It has also been demonstrated as to how condensed phase chemistry is vital in understanding the commonly observed phenomena in solid propellants like extinction, intermittent, plateau and flameless combustions.

In defence and space laboratories and also in some private companies, a large number of scientists and engineers are involved in work on propellants. This monograph will be extremely useful for this large community, not only in helping them to assess the progress made in AP-based composite solid propellants but also to grasp the key phenomena in an organised manner. It will also serve as a useful information source for those who wish to enter the fascinating field of solid propellant combustion. Besides, there are many academic institutions and universities where propellant chemistry is taught either as an independent subject or under the general courses in combustion or fuel science and technology. This monograph will serve as a good reference book not only for those opting for these courses but also for those engaged in basic research in propellant chemistry. This monograph is aimed at catering to the information needs of readers at postgraduate and research levels. The readers of course are required to have some exposure in propellants.

The authors are extremely thankful to the Indian Space Research Organisation (ISRO), Bangalore and ISRO-Indian Institute of Science-Space Technology Cell for providing funds for writing this monograph. The authors are also thankful to ISRO for agreeing for the open publication of the monograph by DRDO and to have no claim on its copyright from DRDO. They are also thankful to Mr S Vasudeva Murthy for the assistance rendered in the preparation of the manuscript.

Bangalore January 1999 K Kishore K Sridhara

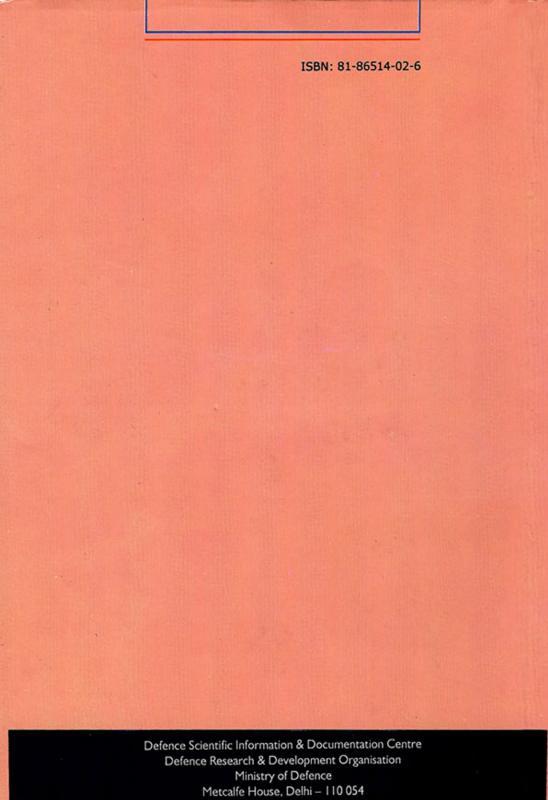
CHAPTER 1 INTRODUCTION

Man's desire to explore outer space and build a strong defence edifice has culminated in the development of space vehicles and missiles in which composite solid propellants (CSP) are the major source of chemical energy^{1,2}. Being complex mixtures, their combustion behaviour too is quite complex and is not yet fully understood. CSP³⁻⁶ are heterogeneous mixtures consisting of a large proportion of oxidizer, usually ammonium perchlorate (AP), and a fuel-cum-binder, generally hydroxy-terminated polybutadiene (HTPB) or carboxy-terminated polybutadiene (CTPB). In addition, they contain curing agents, plasticizers and bonding agents for improving their mechanical properties, and metallic fuel additives and burning rate modifiers for improving specific impulse and burning rate, respectively. A typical CSP composition is given in Table 1.1.

Ingredients	Weight, %
Ammonium perchlorate	60 - 84
Butadiene polymer	12 - 16
Aluminium	2 - 20
Curing agent(s)	0.2 - 1.0
Stabilizers	0 - 1.0

Table 1.1. Typical composition of CSP⁶

The chemistry of a CSP formulation and its combustion is an engrossing complex phenomenon and has been the subject of many studies⁷⁻¹⁴. The combustion profile of the propellant can be classified into several zones, such as heated zone, chemical reaction zone, burning surface zone and porous zone, all in the condensed phase, and fragment flowing zone and product zone in the gas phase¹⁵. The combustion of CSP occurs to varying degrees in both condensed


Solid Propellant Chemistry

2

and gas phases¹⁶. There are two schools of thought regarding the combustion of CSP. According to one school, the gas phase processes are believed to control the burning of the propellant; the gaseous species emanating from the pyrolyzing surface are considered to intermix and react exothermally in the gas phase to form final products, liberating heat and establishing an equilibrium flame temperature. Part of the heat generated in the flame is transferred to the surface to be used up in pyrolyzing and gasifying the surface layer, so that the combustion process recurs steadily. In modelling gas phase combustion processes, the reactions occurring therein are considered to be fast and the heat transfer from the flame to the surface is considered to be the rate-controlling step.

The other school of thought¹⁶⁻¹⁸, which also includes the Bangalore group¹⁹⁻²⁶, believes that the condensed phase reactions occurring at or just below the burning surface are important. The decomposition/degradation in addition to the gas phase reactions of the oxidizer and the binder, and the cross-reactions between their products are exothermic in nature and contribute significantly to the total energy of the propellant. Condensed phase processes also include melting and gasification phenomena at the surface. Knowledge about the chemistry of condensed phase reactions, which is a key process, will facilitate understanding of vital phenomena like burning rate modulation and ageing. An organized comprehension of the condensed phase chemistry will also provide a better insight into the extinction phenomenon and intermittent, plateau and flameless combustion.

Kishore and coworkers¹⁹⁻²⁷ demonstrated both qualitatively and quantitatively the existence of condensed phase reactions. In AP/polystyrene (PS) model propellant¹⁹⁻²⁶, mass spectroscopic analyses have indicated that the mass spectrum of CSP is different from the additive spectra of AP and PS individually. Likewise, the enthalpy of propellant decomposition, which is a nucleationcontrolled phenomenon²⁸, is larger compared to the additive enthalpies of the individual components^{29,30}. This excess enthalpy of the condensed phase is about one third of the calorimetric value (total heat of combustion)^{18,23,24,31}. This is corroborated by a master plot of the thermal decomposition rate against the burning rate of propellants, which suggests that the burning rate increase/decrease is about one third of the order by which the rate of thermal decomposition increases/decreases in the presence of additives^{21,22,25}. Separation of the binder portion from the quenched

India