

ACOUSTO-OPTIC DEVICES AND THEIR DEFENCE APPLICATIONS

JC Joshi

Defence Scientific Information & Documentation Centre Defence Research & Development Organisation Ministry of Defence, India

ACOUSTO-OPTIC DEVICES AND THEIR DEFENCE APPLICATIONS

Monographs Published Under DRDO Monographs Series

Introduction to Camouflage and Deception JV Ramana Rao Solid Propellant Chemistry

K Kishore & K Sridhara *Environment in Submarines*

MVR Koteswara Rao

An Introduction to Night Vision Technology

R. Hradaynath

Photonics in Warfare VV Rampal

Aerodynamic Predictive Methods and their Validation in Hypersonic Flows

AK Sreekanth

Modelling Radar ECCM: A System Approach AK Subramanian

Microwave Circuits and Components GP Srivastava

Inverse Gas Chromatography

AK Sen

Environmental Conservation and Security AK Datta & Ram Kumar

Defence Research & Development Organisation Ramadas P Shenoy

Infrared Detectors: Materials and Technology

AK Sreedhar and KSR Koteswara Rao

Reminiscences of a Defence Scientist – A Quest for Self-reliance

V Narayana Rao

ACOUSTO-OPTIC DEVICES AND THEIR DEFENCE APPLICATIONS

JC Joshi

Former Scientist Laser Science & Technology Centre

Defence Research & Development Organisation Ministry of Defence New Delhi - 110 011 2007

DRDO MONOGRAPHS SERIES

ACOUSTO-OPTIC DEVICES AND THEIR DEFENCE APPLICATIONS JC Joshi

Series Editors Editor-in-Chief Dr AL Moorthy	Associate Editor -in Chief Ashok Kumar	Editors Shashi Tyagi, A Saravanan
<i>Editorial Asst.</i> Sanjay Kumar	<i>Cover Design</i> Rajesh Kumar	<i>Proofreading</i> AK Sen

Production

Printing	Marketing
SK Tyagi	MG Sharma, Rajpal Singh

Cataloguing in Publication JOSHI, J.C Acousto-optic devices and their defence applications

DRDO monographs series.

ISBN 81-86514-19-8

1. Acousto-optic 2. Defence Applications 3. Devices 4. Transducers I. Title (Series) 681.7/.8:623 (061.62)

 $^{\odot}$ 2007, Defence Scientific Information & Documentation Centre (DESIDOC), Defence R&D Organisation, Delhi – 110 054.

All rights reserved. Except as permitted under the Indian Copyright Act 1957, no part of this publication may be reproduced, distributed or transmitted, stored in a database or a retrieval system, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

The views expressed in the book are those of the author only. The editors or publisher do not assume responsibility for the statements/opinions expressed by the author.

Printed and published by Director, DESIDOC, Metcalfe House, Delhi - 110 054.

CONTENTS

Preface		
СНА	APTER 1: LIGHT PROPAGATION IN A TRANSPARENT	
	MEDIUM	
1.1	Introduction	1
1.2	Acousto-optic Interaction	3
1.3	Propagation of Light in a Transparent Medium	4
	1.3.1 Maxwell's Electromagnetic Field Equations	4
	1.3.1.1 Isotropic Medium	4
	1.3.1.2 Anisotropic Medium	8
	1.3.2 Polarisation	13
1.4	Optically Active Media	22
СНА	APTER 2: ACOUSTO-OPTIC INTERACTION	
2.1	Acoustical Strains	27
2.2	Acousto-optic Effect	30
2.3	Acousto-optic Interaction in Isotropic Medium	31
2.4	An Alternative Approach	41
2.5	Diffraction Efficiency	42
2.6	Bandwidth of the Acousto-optic Device	45
2.7	Anisotropic Acousto-optic Interaction	47
2.8	Anisotropic Diffraction Efficiency	54
2.9	Anistropic Diffraction Bandwidth	55
2.10	Anisotropic Interaction in an Optically-active Material	57
CH/	APTER 3: ACOUSTO-OPTIC DEVICES	
3.1	Introduction	59
3.2	Light Deflection	59
3.3	Practical AO Deflectors	64
3.4	Design of the Transducer	66
	3.4.1 Isotropic Diffraction	67

	3.4.2 Anistropic Diffraction	70
	3.4.3 Phased Array Transducers	73
	3.4.4 Transducer Height	76
3.5	Acousto-optic Modulators	78
3.6	Modulators	79
3.7	Bandwidth	82
3.8	Efficiency	84
3.9	Acousto-optic Tunable Filters	86
	3.9.1 Angular Aperture	91
	3.9.2 Non-collinear AOTF	92

CHAPTER 4: DEVICE FABRICATION AND TESTING

4.1	Acousto-optic Materials	97
4.2	Acousto-optic Nonlinearity	101
4.3	Acousto-optic Attenuation	103
4.4	Acousto-optic Materials for Modulators	107
4.5	Acousto-optic Tunable Filters (AOTF)	109
4.6	Materials for Transducers	109
4.7	Electrode and Bonding Materials	113
4.8	Fabrication of Acousto-optic Devices	115
4.9	Transducer	117
4.10	Phased Array Transducer	123
4.11	Impedance Matching	129
4.12	Interdigital Transducer	129
4.13	Testing and Evaluation of Acousto-optic Devices	132
4.14	Testing of Acousto-optic Deflectors	132
4.15	Schlieren Imaging	133
4.16	Bandwidth Testing	134
4.17	Scattering Measurements	136
4.18	Diffraction Efficiency Measurement	137
4.19	Third-order Intermodulation Testing	138
4.20	Determination of Dynamic Range	140
4.21	Time Bandwidth Product Determination	140
4.22	Determination of Acoustic Attenuation	142
4.23	Acousto-optic Modulator Testing	142
	4.23.1 Rise-time Testing	143
	4.23.2 Modulation Transfer Function	144
	4.23.3 Modulation Contrast Ratio	146
4.24	Testing of Acousto-optic Tuning Filter	146
	4.24.1 Tuning Relation	146

4.24.2	Optical Bandwidth Measurement	148
4.24.3	Out of Band Transmission Test	148
4.24.4	Polarisation Rejection Ratio	149
4.24.5	Angular Aperture Test	149

CHAPTER 5: THIN FILM ACOUSTO-OPTIC DEVICES

5.1	Introduction	153
5.2	Guided Optical Waves	153
5.3	Guided Wave Field Patterns	157
5.4	Guide Thickness	160
5.5	Practical Optical Waveguides	162
5.6	Acousto-optic Interaction in Optical Waveguides	171
5.7	Fabrication of Planar Waveguide	178
5.8	Interdigital Transducer	180
5.9	Integrated Optic Acousto-optic Device	185
5.10	Wideband Saw Transducer	186
	5.10.1 Multiple Tilting IDT	187
	5.10.2 Phased Array Transducers	191
	5.10.3 Multiple Tilted Phased Array Transducers	192
	5.10.4 Tilted Finger Chirp Transducer	192
	5.10.5 Anisotropic Bragg Diffraction using Chirp Transducer	192

CHAPTER 6: ACOUSTIC-OPTIC DEVICE APPLICATION

6.1	Introduction	195
6.2	Convolution and Correlation	195
6.3	Acousto-optic Convolver	203
6.4	2-D Deflectors	212
6.5	Applications of AO Devices	217
	6.5.1 Matched Filters	218
	6.5.2 Spread Spectrum Communication	220
	6.5.3 Surveillance Applications	226
	6.5.4 Spectrum Analyser	230
	6.5.4.1 Frequency Resolution and Aperture Function	232
	6.5.4.2 Spur-free Dynamic Range	233
	6.5.4.3 Dynamic Range	233
	6.5.5 Interferometric Spectrum Analyser	236

CHAPTER 7: CURRENT AND FUTURE TRENDS

7.1	Introduction	245
7.2	Optical Bistability	245

7.3	Neural Networking	247
7.4	Integrated Optics	248
Inde	lex	253

PREFACE

Ever since I started working in the field of acousto-optics (AO), I faced difficulties almost at every step in the development of devices such as AO deflector or modulator. Indeed, libraries are well-stocked with books explaining the complex theories of the subject. As a result there was little or no information available which provide practical steps or tips for application of the theory in device development. This prompted and motivated me to write a book that not only explains theoretical aspects but also devotes sufficient pages outlining the practical steps required in developing AO devices. This book has been written keeping in mind the requirements of a new worker in the field of AO and includes some practical tips useful in device development, which are scattered in the literature in the form of scientific papers published in various journals. I do hope that both researchers and students of acousto-optics would find this book useful, to some extent if not fully, in pursuing their interest in the area of AO work.

I have devoted the first two chapters to the theories of the AO. These theories have been written to highlight the basic underlying principles of AO in a way simple and easy to understand. The third chapter deals with the designing of AO devices. To make things simple and easier, only three types of devices namely, AO deflectors, modulators, and AO tunable filters have been chosen.

The fourth chapter is devoted to the fabrication techniques and procedures for these devices. Since testing and evaluation of devices is considered to be the part of device fabrication, the second half of fourth chapter has been devoted to this aspect. In the original proposal for writing this book the contents of the fifth chapter were not planned. After writing the first four chapters it was felt that the present work will not be complete if the topic of integrated AO is not included, for the simple reason that this technique is going to dominate largely if not fully, the future development of AO. Thus the fifth chapter has been devoted to encompass the theory and designing the AO devices in the integrated optic version. As I have been associated with defence related research, the sixth chapter discusses the applications of the AO devices in the field of defence. At the end a small seventh chapter has been added to present the futuristic trends in this field.

The present project could not have been completed successfully without the financial help provided by the Defence Research and Development Organisation for which I am highly indebted to the Organisation. I am highly grateful to my friend Amitav Mullik, Former Director, LASTEC for helping me in arranging the financial help from DRDO. I also acknowledge the University of Colorado, Colorado Springs, USA for allowing me to briefly access their library. My sincere thanks are due to my friend and associate Dr AL Dawar, who helped me in forming the plan of this project. Lastly I thank my wife Gayatri who always tirelessly inspired and encouraged me during the entire period of this project.

Delhi

JC Joshi

April 2007

CHAPTER 1

LIGHT PROPAGATION IN A TRANSPARENT MEDIUM

1.1 INTRODUCTION

Acousto-optic (AO) interaction has been developed during the last forty years of the 20th century. It will be interesting to see the historical background which gave birth to the development of this most powerful technique in the field of optical signal processing. Optics and acoustic waves were studied independently since the early 19th century. The acoustic waves and their propagation through different materials-metallic/non-metallic, transparent or opaque, were studied in detail by Rayleigh¹ who specially described an altogether different acoustic wave namely the surface acoustic wave (SAW) in 1880s when he was studying the causes and movement of earthquakes¹. In 1922, Brillouin² predicted that light can be diffracted in a single order by an acoustic wave propagating in a transparent medium, like xrays from the crystal planes. This prediction, however, could not be verified experimentally until 1932 when Debye and Sears³ demonstrated light diffraction by high-frequency sound waves, into several orders spread symmetrically on both sides of undiffracted light. In the same year, this phenomena was also demonstrated independently by Lucas and Biguard⁴. The explanation for this multiple-order appearance, instead of a single order contrary to his prediction, was proposed by Brillouin². He proposed that this could be due to rescattering of light by sound waves. During 1935-36, Raman and Nath⁵ published a number of papers on the scattering of light by sound waves. A mathematical analysis of the phenomenon was presented based on the proposition that when sound travels in a transparent column, it forms a phased grating which diffracts light into several orders, as is done by a transmission grating. Raman and Nath⁵ also studied the effect of incident light at different angles with respect to the direction of an acoustic beam. This was also studied independently by Debye and Sears³, and Lucas and Biquard⁴. They evolved conditions for diffraction of light into single order and in multiple orders. In 1965, Klein and Cook⁶ presented a detailed qualitative description of single and multiple order diffractions. In 1967, the same scientists⁷ presented their work based on a very important parameter known as *Q*-parameter, whose value decides though not very precisely, the regime of diffraction as Raman-Nath or Bragg.

During 1960s, various workers presented different mathematical analyses which included diffraction of light by sound and the frequency modulation of the diffracted light by the frequency of the acoustic waves. With the development of laser, doors of a new era opened in the field of AO interaction and its possible applications. The first account of application of AO interaction was given by Lieben⁸. Later, many other applications of this effect like parallel processing of a signal, television display, and other signal processing were reported⁹⁻¹¹.

As a consequence of AO interaction, two phenomena are generated, i.e., deflection and modulation of light which either singly or in combination have been used in the development of various AO devices. Beam deflectors were studied widely in the mid-1960's. In these studies, it was first noted that the time bandwidth product of an AO device is an important parameter which decides the angular resolution of the device. Search for newer materials for the AO devices started during this decade. By the end of 1960's, with the availability of newer materials with more attractive properties for the development of AO devices and, photolithographically developed transducers for SAW design, AO interaction became a powerful tool for signal processing. Specially, diffraction of single order has become increasingly important for optical signal processing applications.

New theoretical results were pouring in continuously. A generalised coupled-wave mode theory was proposed for arbitrary sound and light interactions¹². The Raman-Nath theory was extended to the important case of Gaussian sound field¹³. Another important constant indicating the suitability of material as well as M_2 , the figure of merit was also introduced during this time¹⁴.

So far, all the work was confined to the area of transparent isotropic materials only. In 1967, Dixon¹⁵ in an important paper theoretically discussed the diffraction of light by acoustic waves in anisotropic crystals/materials. It was shown that for anisotropic materials, the diffraction efficiency is dependent on both the polarisation of incident light and the acoustic waves.

Recent advances in AO materials have made it possible to fabricate multichannel AO devices with a wide bandwidth and large dynamic range. Such devices have a important role in the area of optical matrix processing.

DRDO MONOGRAPHS SERIES

About the Author

The author possesses an M.Sc Degree in physics and a doctorate degree in Quantum Chemistry. He joined DRDO in November 1970. Since then, he worked in various projects like development of transversely excited atmospheric pressure CO_2 laser, pyroelectric detector, surface acoustic wave device, and finally on the development of acousto-optic devices. He worked on the acousto-optic devices for over 17 years and developed several acousto-optic devices both in the bulk acoustic as well as in surface acoustic integrated optic version. After his retirement in 1997, he worked as consultant for two years in DRDO on the development of chemical oxygen iodine laser. He has published 23 papers in various international journals.

About the Book

The book is a balanced presentation of theory, fabrication and characterization techniques and application of the acousto-optic devices. It is written with a view to help a beginner who wants to enter in this field, but does not know where to start and search in the vast available literature. Without going into tedious mathematics, the author has tried to make aware the underlying principles of topics like convolvers and correlators. From the applications point of view, applications of these devices have been given in detail which have direct relevance with the defence equipment technology.

Defence Scientific Information & Documentation Centre Defence Research & Development Organisation Ministry of Defence, Metcalfe House, Delhi - 110 054 India

Price: Rs. 410 US \$ 60 UK £ 30

