

RADIOLOGICAL PROTECTION

A Summary Handbook of ICRP Publications and Recommendations

A. NAGARATNAM

Radiological Protection : A Summary Handbook of ICRP Publications and Recommendations

A NAGARATNAM

Emeritus Scientist, DRDO Defence Metallurgical Research Laboratory Kanchanbagh, Hyderabad-500 258

> Foreword by Dr VS ARUNACHALAM Visiting Professor Carnegie Mellon University Pittsburgh, PA, USA

DEFENCE RESEARCH & DEVELOPMENT ORGANISATION MINISTRY OF DEFENCE NEW DELHI-110 011 1995 DRDO Monograph/Special Publication Series

Radiological Protection: A Summary Handbook of ICRP Publications and Recommendations

A Nagaratnam

Series Editors

<i>Editor-in-Chief</i>	<i>Editor</i>	<i>Asst Editor</i>
SS Murthy	AL Moorthy	SPS Parihar
Production		
Printing	<i>DTP</i>	Cover Design
SB Gupta	A Nannaya	SK Saxena

© 1995, Defence Scientific Information & Documentation Centre, (DESIDOC) Defence R&D Organisation, Delhi-110 054.

All rights reserved. Except as permitted under the Indian Copyright Act 1957, no part of this publication may be reproduced, distributed or transmitted, stored in a database or a retrieval system, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Publisher.

The views expressed in the book are those of the author only. The Editors or Publishers do not assume responsibility for the statements/opinions expressed by the author.

Printed and Published by Director, DESIDOC, Metcalfe House, Delhi-110 054.

FOREWORD

No technology evokes such strong emotions as nuclear energy. The immense possibility of harnessing the power of the atom to produce limitless power, and also to unleash its fury through nuclear weapons that would destroy humankind are really two faces of the same technology. While the world is slowly moving to a better realization of the destructive power of nuclear weapons and evolving agreements to control and finally eliminate them, it is also getting increasingly restive about the safety of nuclear technology. Recent accidents at Three Mile Island and most notably at Chernobyl have shaken our faith on the very applications using nuclear energy. The industrial and healing power of the atom is today seen through a veil of concern and fear. The new Luddites are busy damning any application using nuclear energy. More than ever it is now necessary that we understand the power of radiation as well as its safe limits.

The International Commission on Radiological Protection (ICRP) is actually playing this role, suggesting possibilities, and warning of the dangers from radiation exposure. Such is the expertise and maturity of ICRP that in spite of it being only a recommendatory body, its advice is sought and taken seriously by all concerned, including international organizations like WHO, FAO, ILO and IAEA. The mission of ICRP is to develop a coherent philosophy and a system of radiation protection that primarily takes into account the justification for radiation exposure and works to calculate an appropriate limit of radiation dosage for that exposure. More, it also suggests optimization of the system of protection so that the benefits far exceed possible hazards. The aim is to evolve a dosage as low as reasonably achievable for that objective. This has evolved into the famous ALARA principle.

The scope of ICRP publications covers a wide canvas: philosophy of perception, evaluation and management of risks; understanding of biological and genetic effects of radiation; technical measures to control radiation hazards; engineering aspects of design and operation of equipment; procedures for monitoring safety; accident evaluation and response; organization and management systems and, public awareness. ICRP has enlisted the services of experts from many countries to carry out this vast mandate.

The recommendations of ICRP are regularly published and updated. From 1959 up to now, it has produced 64 publications that run to 9000 pages! How does one wrestle with such an ocean of information? Mr Nagaratnam's Handbook is a response to this challenge. Using the language of ICRP, he communicates clearly and concisely the salient features of the information given in ICRP publications, exercising critical judgement in choosing relevant areas. By all standards, this is a daunting task, and Mr Nagaratnam has responded to it with his characteristic efficiency and insight.

Mr Nagaratnam is the ideal author for a publication of this kind. For over four decades he has worked in areas related to radiation, first as a scientist at the Institute of Nuclear Medicine and Allied Sciences in Delhi, and later as a Director of the Defence Laboratory at Jodhpur where he concerned himself with the industrial applications of radiation. In both these institutions, he has nurtured and sustained competent groups of engineers and scientists working on problems associated with the peaceful applications of nuclear energy. His experiences in working with scientists of the Bhabha Atomic Research Centre and the Atomic Energy Regulatory Board have also contributed to the usefulness of this Handbook.

Defence Scientific Information and Documentation Centre (DESIDOC) of the Defence Research and Development Organization (DRDO) has come forward to publish this volume as a symbol of their continuing commitment to help the scientists and engineers working in this area. I congratulate DESIDOC for this effort and am confident this volume will soon become a ready reference manual to all workers concerned with nuclear radiation not only in India but in other countries as well.

Pittsburgh July 1994 VS ARUNACHALAM

PREFACE

Mankind is reaping enormous benefits from the peaceful applications of nuclear energy in various fields including power production, medicine, industry, agriculture and research. On the other hand, we know that excessive exposure to ionizing radiations can lead to adverse biological effects. In this respect, radiation is no different from other risks in modern life, since all facets of human advance almost invariably entail some concomitant risks. Wisdom lies in striking a happy and judicious balance in order to ensure that we continue to utilize radiation for human benefit while keeping the potential risk to an acceptable minimum. Radiation should be handled with care, but not fear.

Our knowledge of the biological effects of radiation and potential risks therefrom far exceeds our knowledge of any other hazardous agent, whether in the industrial field, or in the general environment affecting members of the public. The International Commission on Radiological Protection (ICRP) has been playing a pioneering role for decades in this direction. The extensive database that has been established over the decades by the ICRP, the methodologies, techniques and the organizational structures that have been developed to control radiation hazards, and, above all, the philosophy of risk evaluation and management that has been evolved by ICRP, would serve as valuable guides not only to those concerned with radiological protection but to scientists, technologists and administrators involved in all facets of occupational and industrial safety, as well as those concerned with environmental protection.

From 1959 to the end of 1993 ICRP has brought out 64 publications running to around 9000 pages. It is important that everyone connected with the uses of ionizing radiations should be familiar with at least the basic features of the thinking of ICRP as embodied in these publications. The present Handbook attempts to give in a concise, consolidated and codified form the salient features of all the relevant information contained in the voluminous ICRP publications. As far as possible, the language of the original publications themselves has been used.

The suggestion that I take up this assignment came from Dr VS Arunachalam, former Scientific Adviser to the Minister of Defence. I am grateful to him for his constant advice and support, as well as for his kindly agreeing to write the Foreword to this Handbook.

Grateful thanks are due to the ICRP for generously agreeing, in conformity with its policy of encouraging wide dissemination of the information contained in its reports, to using material contained in the relevant ICRP publications for preparing this Handbook. To quote from the communication received from Dr H Smith, Scientific Secretary of ICRP, "On behalf of the International Commission on Radiological Protection I agree to you using the information contained in ICRP Publications 1 to 64 to prepare the monograph. In so doing, however, I stress that this does not necessarily imply that the ICRP will agree to the contents of your monograph or your interpretation of ICRP philosophy".

I would like to express my gratitude to Dr APJ Abdul Kalam, Scientific Adviser to the Minister of Defence, Sri K Santhanam, Chief Adviser on Technologies, Defence Research and Development Organization, Sri KN Singh, Chief Controller, DRDO, Prof P Rama Rao, former Director and Distinguished Scientist, and Sri SLN Acharyulu, the present Director, Defence Metallurgical Research Laboratory, Hyderabad, for their administrative and technical support. Thanks are also due to Sri R Seshadri, Chief Construction Engineer (R&D), Secunderabad; Col S Vasudevan, Director of Estates (R&D), Secunderabad; and Lt Col (Retd) ER Sadasivan, Project Manager, Office of DOE (R&D), Secunderabad for their administrative help. Special mention must be made of Dr SS Murthy, Director, Sri A Lakshmana Moorthy, Scientist and their colleagues at the Defence Scientific Information and Documentation Centre, Delhi, for their untiring efforts in bringing out this publication in an excellent form, and of Sri DS Sastry for his meticulous and fine editing of the manuscript. The help extended by Dr AR Reddy, Director, and the Design Drawing Staff of the Defence Laboratory, Jodhpur in the preparation of several tables and figures is gratefully acknowledged. Dr SC Jain, Scientist from the Institute of Nuclear Medicine and Allied Sciences, Delhi was of great help in several ways during the preparation of the Handbook. It is a pleasure to record my appreciation of and gratitude to my wife Sarasvati for her support in innumerable ways.

Several publishers have given permission for reproducing many tables and figures. Detailed acknowledgments are given separately.

The order of presentation followed in this Handbook does not follow the chronological order in which the publications have come out. The

material has been presented in 7 parts, each dealing with one major aspect of the recommendations, and summarizing the various publications connected with it. A separate note following the Preface gives a brief summary of the way the contents of the Handbook have been arranged.

Subjective judgement had necessarily to be exercised in the choice and emphasis of the subject matter. The author hopes that no important aspect has been left out. The part dealing with radiological protection in the medical applications of radiation has deliberately been made rather exhaustive. Very few medical colleges or leading hospitals in our country seem to have access to ICRP publications. Since it is well known that medical exposure contributes the largest share to population exposure from man-made radiation sources, and since significant reductions in exposure levels, particularly in diagnostic radiology, can be effected by the utilization of simple and cost-effective protection measures without reduction in the diagnostic information of interest, it was considered worthwhile to deal with this subject somewhat elaborately.

ICRP periodically reviews and updates its database in the light of recent information, particularly in the field of biological effects of radiation. The Commission also regularly revises its reports and recommendations, incorporating newer thinking; this is a continuing exercise. Among the immediate tasks ICRP is currently engaged in are revision of earlier reports to bring them into conformity with the latest main (1990) recommendations, revision of several dosimetric models including those of the respiratory tract, Reference Man, embryo and fetus, and radon exposures, as well as extending the age-dependent dosimetric computations to more radionuclides for exposure of members of the public from internally incorporated radionuclides. In the present Handbook, the author had necessarily to content himself with summarizing reports that were brought out by ICRP till the end of 1993.

Hyderabad 20 June 1994 A. NAGARATNAM

SUMMARY OF THE CONTENTS OF THE HANDBOOK

Part I is an extended summary of the latest main recommendations, as brought out in the text of ICRP Publication 60 (1991), using the language of the original publication itself to the extent possible. The order of presentation is the same as that of ICRP 60. Starting from a brief history of the ICRP and the development of ICRP recommendations (Chapter 1), a summary is next given (Chapter 2) of the quantities and units in radiological protection. Chapter 3 summarizes current knowledge on the biological effects of radiation. Chapter 4 deals with the conceptual framework of radiological protection, an area in which ICRP has thoughtfully developed a unique, logical and comprehensive system. Chapter 5 deals with the application of the system of protection for proposed and continuing practices. The basis for the currently recommended numerical values for the dose limits is explained. Chapter 6 is concerned with the application of the system in the case of intervention (following emergencies and accidents). Chapter 7 deals with the implementation of the recommendations, with special reference to the organizational aspects. Chapter 8 is a summary (as given by the ICRP itself) of the recommendations.

Appendix 5.1 deals with the conceptual framework of protection from potential exposures (for which there is a possibility but no certainty of occurrence). Appendix 8.1 (written by the author) gives in somewhat greater detail than in chapter 1 the history and organization of ICRP. Appendix 8.2 (also written by the author) gives a fairly detailed account of the historical evolution of the recommendations. Appendix 8.3 is an updated version of the list of ICRP publications given in ICRP 60.

Part II deals with the biological effects of radiation. It starts (Chapter 9) with a discussion of basic radiobiology at the cellular level. Chapter 10 discusses deterministic effects in various tissues and organs. Chapters 11 and 12 are concerned respectively with the two main types of stochastic effects, viz. induction of cancer and hereditary effects. The sources from which our knowledge of biological effects of radiation is derived, including human experience and results of animal experiments, are discussed. Numerical values of risk estimates are given, and the margin of uncertainty in these figures is indicated. To give a sense of perspective, Appendix

12.1 tabulates data (taken from the 1988 Report of the United Nations Scientific Committee on the Effects of Atomic Radiation) on the current levels of doses from radiation sources, natural and man-made. It is natural that great interest is being evinced on the effects of radiation on the embryo and fetus, and Chapter 13 is devoted to this aspect. The main concern today in radiological protection is in relation to the effects of low dose exposure. The subject is beset with difficulties and uncertainties, and Chapter 14 summarizes the current situation. Chapter 15 discusses the biological effects of inhaled radionuclides, a subject of relevance in certain important stages in the operation of the nuclear fuel cycle.

Part III deals with external and internal dosimetry, a topic whose importance in radiological protection hardly needs emphasis. Chapter 16 deals with quantities used in radiological protection, and is an elaboration and extension of Chapter 2. Considerable effort has gone into the development of the 'Reference Man', with well-defined anatomical, physiological and metabolic characteristics, for standardization of dosimetric protocols; Chapter 17 gives a fairly exhaustive account of the characteristics of the Reference Man. Chapters 18 to 20 discuss in detail the mathematical methodologies for internal dosimetry. Chapters 21 to 24 give details of the dosimetric models (lung, GI tract, bone, and submersion in a radioactive cloud). Chapters 25 and 26 give numerical values of internal dosimetric data for important radionuclides, for occupational workers and members of the public respectively. The impact, particularly on the public, of radionuclide releases into the environment is an important area, but subject to many difficulties in assessment. Chapter 27 deals briefly with the models developed by ICRP appropriate for such assessment. Chapter 28 is devoted to external dosimetry.

ICRP has evolved a realistic system of operational radiation protection in various applications for effective implementation of its recommendations; this forms the subject matter of Part IV. The general principles of monitoring, and monitoring programmes for protection of the workers and members of the public, both under normal conditions of operation and in the event of a major accident, are discussed in Chapters 29, 30 and 32. Chapters 31 and 33 discuss the procedures for handling accidents and emergencies, with respect to protection of the workers and members of the population respectively. ICRP has recently been concerning itself with principles of limiting exposures of the public to natural sources of radiation, and Chapter 34 summarizes the relevant guidelines. With the increasing use of devices and techniques involving ionizing radiation for the teaching of science (such as X-rays and radiotracers), ICRP has given guidelines for protection of the students which are summarized in Chapter 35. Chapter 36 deals

with the principles for the disposal of solid radioactive waste; such practices involve probabilistic assessments of events not only in the present but even in the far distant future.

In view of its historic association with the International Congress of Radiology, as well as the great relevance of radiological protection in medical applications (diagnostic radiology contributes the overwhelming share to population exposure from man-made sources of radiation), ICRP has devoted special attention to this area and given detailed recommendations on specific applications including diagnostic radiology, radiotherapy, nuclear medicine, and biomedical research involving radiation exposure. Part V (Chapters 37 to 41) discusses these aspects. (Appendix 37.1 gives the ICRP guidelines regarding radiological protection in biomedical research.)

Over the last two decades or so we have come to realize that exposure from the daughter products of radon and thoron forms the major proportion of exposure of every member of the human population from natural sources. Doses from this source are highly variable, depending upon geological factors and life styles, and can be very high to people living in certain geographic areas. Part VI (Chapter 42) deals with this subject, including guidelines for limiting exposures of the public from excessive exposure to radon and its daughters inside buildings.

A noteworthy feature of ICRP recommendations is the deep thought that has been given to the problem of risk evaluation and acceptance, as well as to the problem of judicious allocation of resources to radiological protection in the overall context of peaceful applications of nuclear energy in various fields. Part VII deals with these subjects. ICRP has developed elegant methodologies for optimizing and decision-making in radiological protection. These are not merely confined to broad generalities but appropriate techniques have been developed for practical application in specific cases. This is dealt with in Chapter 43. One of the difficult problems that ICRP has tackled is the attempt to evolve a quantitative basis for comparing risks of different kinds, to arrive at a generally applicable parameter for risk expression, as well as to evolve a consensus on what is a level of 'acceptable risk', whether for an occupational worker or a member of the public; these tasks involve not merely scientific but societal value judgements on the perception and acceptance of risk. It is only by a careful consideration of all these factors that it would be possible to arrive at dose limits for radiological protection implying acceptable levels of risk. These questions are discussed in Chapters 44 and 45.

It may be mentioned that in the list of references at the end of each chapter, those pertaining to the different ICRP publications (which have been referred to in the individual chapters in the text) have not been included, since Appendix 8.3 gives the list of all ICRP publications todate.

ACKNOWLEDGEMENTS

The author gratefully thanks the following for their kind permission to reproduce material from their publications:

Academic Press, Inc., USA, for the figure 'Observed biological effects of inhaled plutonium' modified from Bair, W.J. (1974). Toxicology of Plutonium. In: *Advances in Radiation Biology*, Vol. 4, edited by J.T. Lett, H. Adler and H. Zelle, 255-315;

Commission of the European Communities, Luxembourg, and Harwood Academic Publishers, Switzerland, for the figure 'Shape of dose responses for low LET and high LET radiations plotted on linear axes' from Sinclair, W.K. (1982). Fifty Years of Neutrons in Biology and Medicine: The Comparative Effects of Neutrons in Biological Systems. In: *Proceedings* of the 8th Symposium on Microdosimetry, EUR 6395; pp 1-37;

The Institute of Physics, UK, for the table 'Distribution of bone marrow spaces in adult bone' from Woodard, Helen Q. and Holodny, Edward (1960). A Summary of the Data of Mechanik on the Distribution of Human Bone Marrow. *Phys. Med. Biol.*, **5**, 57-59;

International Commission on Radiation Units and Measurements, for the table 'RBE values for fission (or optimum energy neutrons) vs gamma rays for stochastic end-points' from ICRU (1986). The Quality Factor in Radiation Protection, ICRU Report 40;

The US National Academy of Sciences, for the table 'Salient features of the major study: populations evaluated for derivation of numerical risk estimates', from *Health Effects of Exposure to Low Levels of Ionizing Radiation (BEIR V)*. Copyright 1990 by the National Academy of Sciences. Published by the National Academy Press, Washington, D.C.;

National Council on Radiation Protection and Measurements, USA, for the figure 'Schematic curves of incidence vs absorbed dose' from NCRP (1980). Influence of Dose and its Distribution in Time on Dose-Response Relationships for Low LET Radiations, NCRP Report 64; National Radiological Protection Board, UK, for (a) the table 'Derived levels of surface contamination' from Wrixon, A.D., Linsley, G.S., Binks, K.C. and White D.F. (1979). *Derived Levels for Surface Contamination*, Report NRPB-DL2, and its supplement (1982); and (b) the figure 'Simplified version of the proposed new ICRP lung model' from Bailey, M.R. and Birchall, A. (1991). New ICRP Dosimetric Model for the Respiratory Tract: A Progress Report. *Radiat. Prot. Bull.*, **119**,13-20.

Nuclear Technology Publishing, UK, for (a) the table 'RBE_M values for fission (or optimum energy) neutrons vs gamma rays for stochastic end-points' from Sinclair, W.K. (1985). Experimental RBE Values of High LET Radiations at Low Doses and the Implications of Quality Factor Assignment. *Radiat. Prot. Dosim.*, **13**, 319-26; and (b) the figure 'Effective $Q(\bar{Q})$ as a function of photon energy' from Drexler, G., Veit, G. and Zanke, M. (1990). The Quality Factor for Photons. *Radiat. Prot. Dosim.*, **2**(2), 83-89;

Springer-Verlag GmbH, Germany, for the table 'Summary of the Weibel model of the tracheo-bronchial region' from Weibel, Ewald R. (1963). *Morphometry of Human Lung*;

University of Minnesota Press, USA, for the figure 'Four general postnatal growth patterns according to age' from Harris, J.A., Jackson, C.M., Patterson, D.G. and Scammon, R.E. (Eds) (1930). *The Measurement of Man.* Copyright 1930, University of Minnesota Press, Minneapolis; and

United Nations Scientific Committee on the Effects of Atomic Radiation, for the following:

(a) Table 'Skin doses in primary beam in diagnostic radiology (median values in cGy per examination)' from UNSCEAR (1979). Sources and Effects of Ionizing Radiation; (b) table 'Estimation of approximate thresholds for clinically detrimental non-stochastic effects in various tissues based on response of patients in conventionally fractionated therapeutic X or gamma radiation' from UNSCEAR (1982). Sources and Biological Effects; (c) table 'Main characteristics of the A-bomb survivor, ankylosing spondylitis, and cervical cancer series' from UNSCEAR (1988). Sources, Effects and Risks of Ionizing Radiation; (d) table 'Estimates of genetic risk arrived at by UNSCEAR in its 1988 report using the direct method: low LET low dose-rate (chronic irradiation conditions)' from UNSCEAR (1988). Sources, Effects and Risks of Ionizing Radiation; and (e) author's appendix containing two tables on 'Average doses to the world population from natural and man-made sources of radiation' from UNSCEAR (1988). Sources, Effects and Risks of Ionizing Radiation' from UNSCEAR (1988). Sources, Effects and Risks of Ionizing Radiation' from UNSCEAR (1988). Sources, Effects and Risks of Ionizing Radiation' from UNSCEAR (1988). Sources, Effects and Risks of Ionizing Radiation' from UNSCEAR (1988). Sources, Effects and Risks of Ionizing Radiation' from UNSCEAR (1988). Sources, Effects and Risks of Ionizing Radiation' from UNSCEAR (1988). Sources, Effects and Risks of Ionizing Radiation' from UNSCEAR (1988). Sources, Effects and Risks of Ionizing Radiation.

CONTENTS

Foreword	iii
Preface	ν
Summary of the Contents of the Handbook	ix
Acknowledgements	xiii

PART I: MAIN RECOMMENDATIONS OF ICRP (1990 Recommendations, ICRP Publication 60)

CHAPTER 1

INTRODUCTION	
The History of ICRP	1
The Development of ICRP Recommendations	2
Form of ICRP Publication 60	4
	The History of ICRP The Development of ICRP Recommendations

CHAPTER 2

QUANTITIES USED IN RADIOLOGICAL PROTECTION		
(SUMMARY)		5
2.1	Introduction	5
2.2	Basic Dosimetric Quantities	6
2.2.1	Radiation Weighting Factors	6
2.2.2	Equivalent Dose	7
2.2.3	Tissue Weighting Factors and Effective Dose	8
2.3	Subsidiary Dosimetric Quantities	9
2,4	Other Quantities	10
	Tables	11

BIOLOGICAL ASPECTS OF RADIOLOGICAL PROTECTION		13
3.1	Biological Effects of Radiation	13

3.2	The Concept of Detriment	14
3.3	Quantitative Estimates of the Consequences of Exposure	15
3.3.1	Deterministic Effects	16
3.4	Stochastic Effects in Exposed Individuals	17
3.4.1	Uncertainties in the Various Studies on Exposure	17
3.4.2	Dose-response Relationship	19
3.4.3	Multiplicative and Additive Risk Projection Models	19
3.4.4	Nominal Probability Coefficient	20
3.4.5	Stochastic Effects in Progeny	22
3.4.6	Effects of Antenatal Exposure	23
3.5	Tissue Weighting Factors	24
	Tables	26

CHAPTER 4

THE CONCEPTUAL FRAMEWORK OF RADIOLOGICAL PROTECTION

4.1	Introduction	29
4.2	The Basic Framework	29
4.3	The System of Radiological Protection	32
4.4	Radiological Protection in Proposed and Continuing	
	Practices	33
4.4.1	Justification of a Practice	33
4.4.2	Optimization of Protection	33
4.4.3	Individual Dose Limits	34
4.4.4	Potential Exposures	35
4.5	Radiological Protection by Intervention	35
4.6	Assessment of the Effectiveness of the System of	
	Protection	36

29

37

CHAPTER 5

THE SYSTEM OF PROTECTION FOR PROPOSED AND CONTINUING PRACTICES

5.1	Introduction	37
5.2	Types of Exposure	37
5.2.1	Occupational Exposure	37
5.2.2	Medical Exposure	38
5.2.3	Public Exposure	38
5.3	The Application of the System of Protection	38

5.4	System of Protection in Occupational Exposure	39
5.4.1	The Optimization of Protection in Occupational Exposure	39
5.4.2	Dose Limits in Occupational Exposure	39
5.4.3	The Occupational Exposure of Women	44
5.5	The System of Protection in Medical Exposure	45
5.5.1	Justification	45
5.5.2	Optimization	45
5.5.3	Dose Limits	46
5.5.4	Medical Exposure of Pregnant Women	46
5.6	The System of Protection in Public Exposure	46
5.6.1	Optimization	46
5.6.2	Dose Limits	47
5.7	Potential Exposures	48
5.7.1	Justification	49
5.7.2	Optimization	49
5.7.3	Individual Risk Limits and Constraints	49
5.8	Interactive Situations	50
	Tables	51

APPENDIX 5.1

PROTECTION FROM POTENTIAL EXPOSURES: A CONCEPTUAL FRAMEWORK

53

Introduction	53
Basic Concepts	53
The Basis of Radiation Safety	54
Practical Applications	55
Assessment Techniques	57
Application in Practice	57
Exclusion of Scenarios and Event Sequences	58
Exemption of Scenarios and Event Sequences	58
Regulation in the Context of Potential Exposures	59
Table	60

THE SYSTEM OF PROTECTION IN INTERVENTION	61
--	----

6.1	Introduction	61
6.2	The Basis of Intervention in Public Exposure	61
6.3	Situations in which Remedial Action may be Needed	62

6.3.1	Radon in Dwellings	62
6.3.2	Radioactive Residues from Previous Events	62
6.4	Accidents and Emergencies	63
6.4.1	Intervention Affecting the Public	63
6.4.2	Limitation of Occupational Exposure in Emergencies	64

CHAPTER 7

IMPLEMENTATION OF	THE COMMISSION'S
RECOMMENDATIONS	

7.1 Introduction 65 7.2 Responsibility and Authority 66 7.3 The Recommendations of the Commission 66 **Regulatory Requirements** 7.4 67 The Regulation of Practices 7.4.1 67 7.4.2 Regulation in the Context of Potential Exposures 68 7.5 Management Requirements 68 The Classification of Workplaces and Working Conditions 69 7.5.1 **Operational Guides** 7.5.2 70 7.5.3 Reference Levels 70 7.5.4 Occupational Services for Protection and Health 70 7.6 Assessment of Doses 71 Dosimetry in Occupational Exposure 71 7.6.1 Dosimetry in Medical Exposure 7.6.2 73 Dosimetry in Public Exposure 73 7.6.3 7.7 Compliance with the Intended Standard of Protection 73 7.7.1 **Record Keeping** 74 **Emergency** Planning 74 7.8 Exclusion and Exemption from Regulatory Control 76 7.9

CHAPTER 8

SUMMARY OF 1990 RECOMMENDATIONS OF ICRP (ICRP PUBLICATION 60)

77

65

8.1	Introduction	77
8.2	Quantities Used in Radiological Protection	77
8.3	Biological Aspects of Radiation Protection	78
8.4	The Conceptual Framework of Radiological Protection	80
8.4.1	The System of Protection in Practices	80
8.4.2	The System of Protection in Intervention	81

The Control of Occupational Exposure	82
Dose Constraints	82
Dose Limits	82
The Occupational Exposure of Women	83
The Control of Medical Exposure	84
The Control of Public Exposure	85
Dose Limits	85
Potential Exposures	85
The System of Protection in Intervention	86
Radon in Dwellings	86
Intervention after Accidents	87
Practical Implementation of the Recommendations	87
Tables	88
	Dose Constraints Dose Limits The Occupational Exposure of Women The Control of Medical Exposure The Control of Public Exposure Dose Limits Potential Exposures The System of Protection in Intervention Radon in Dwellings Intervention after Accidents Practical Implementation of the Recommendations

APPENDIX 8.1

HISTORY AND ORGANIZATION OF ICRP	91
Early History	91
Formation of ICRP	91
ICRP (1950)	92
ICRP (1950-59)	93
ICRP (1962)	93
Present Position	93
ICRP Publications	94

APPENDIX 8.2

EVOLUTION OF ICRP RECOMMENDATIONS	95
Early History	95
Formation of ICRP (1950) and ICRP Recommendations	
(1950)	95
The Phase 1950-1958	96
ICRP Recommendations (1958) [ICRP Publication 1]	97
ICRP Publication 6 (1962)	102
ICRP Publication 9 (1965)	103
ICRP Publication 22 (1973) and Cost-benefit Analysis	105
ICRP Publication 26 (1977)	106
Some Further Comments on ICRP 26	110
Amendments to Recommendations of ICRP 26 in	
Subsequent Meetings of the Commission	111

Table APPENDIX 8.3		115
LIST OF ICRP PUBLICATIONS		116

PART II: BIOLOGICAL EFFECTS OF RADIATION

CHAPTER 9

BASIC RADIOBIOLOGY

125

139

9.1	Introduction	125
9.2	Interaction of Radiation with Matter	125
9.3	Biological Structure and Function	126
9.3.1	DNA Damage and Repair	127
9.3.2	Cell Killing	128
9.3.3	Cell Modification	128
9.3.4	Tissue Response to Cell Modification	129
9.4	Stochastic and Deterministic Effects	129
9.4.1	Deterministic Effects	130
9.4.2	Cell Killing and in vitro Survival Curves	131
9.4.3	Effects of Fractionation and Protraction of Irradiation	135
9.4.4	Iso-effect Relationship	136
	References	137

CHAPTER 10: SECTION 1

DETERMINISTIC EFFECTS IN DIFFERENT ORGANS AND TISSUES

10(1).1	Introduction	139
10(1).2	Skin	139
10(1).3	Digestive System	142
10(1).4	Haematopoietic System	143
10(1).5	Cardiovascular System	144
10(1).6	Eye and Other Sensory Organs	144
10(1).7	Nervous System	145
10(1).8	Reproductive System	146
10(1).9	Urinary Tract	146

10(1).10	Respiratory System	147
10(1).11	Musculoskeletal System	147
10(1).12	Endocrine System	148
10(1).13	Death after Whole Body Irradiation	149
10(1).14	Conclusions and Recommendations	150
10(1).14.1	Testes	151
10(1).14.2	Ovaries	151
10(1).14.3	Lens of the Eye	151
10(1).14.4	Bone Marrow	151
10(1).14.5	Dose Limits for Members of the Public	152
10(1).15	Revised Dose Limits (ICRP 60)	152
	References	153
	Tables	160

CHAPTER 10: SECTION 2

RBE FOR DETERMINISTIC EFFECTS 164

10(2).1	Introduction	164
10(2).2	RBE Values	165
10(2).3	RBE Values for Effects on Cultured Cells	167
10(2).3.1	RBE Data for Different Types of Cultured Cells	168
10(2).4	RBE Values for Tissue Responses	169
10(2).5	Effects of Inhaled Alpha and Beta Emitters in Lung	170
10(2).6	RBE Values for Deterministic Effects and their Relation	
	to Q Values	171
10(2).6.1	Accident Situations	171
10(2).7	Conclusions	172
	References	172
	Tables	174

CHAPTER 11: SECTION 1

INDUCTION OF CANCER BY RADIATION AND RISK ESTIMATES 177

11(1).1	Introduction	177
11(1).2	Cancer Induction by Radiation: Dose-response	
	Relationships	180
11(1).3	Cancer Induction After Exposure to High LET Radiations	182
11(1).4	Estimates of Probability for Carcinogenic Effects	183
11(1).4.1	New Laboratory Findings Since 1977	187

11(1).5	Methodological Factors Affecting Probability Estimation	187
11(1).5.1	Multiplicative and Additive Models for Projection of	
	Probabilities	187
11(1).5.2	Cancer Incidence vs Mortality	189
11(1).5.3	Biological Factors Affecting Cancer Induction	189
11(1).5.4	Sensitive Sub-populations	190
11(1).5.5	Influence of Dose Rate, Fractionation and LET	191
11(1).6	Estimates of Fatal Cancer Probabilities	191
11(1).6.1	Fatal Cancers in Other Selected Organs	193
11(1).6.2	Expected Years of Life Lost from Fatal Cancers in	
	Different Organs	194
11(1).6.3	Morbidity and Detriment	195
11(1).6.4	Uncertainties in Risk Estimates	196
11(1).6.5	Cancer Risk following in utero Irradiation	196
11(1).7	Summary of Estimates of Probabilities of Biological	
	Effects	196
	References	196
	Tables	206

CHAPTER 11: SECTION 2

RADIOSENSITIVITY AND SPATIAL DISTRIBUTION OF DOSE 211

11(2).1	Introduction	211
11(2).2	Report of the Task Group on Spatial Distribution of	
	Radiation Dose	211
11(2).3	Report of the Task Group to Consider the Relative	
	Radiosensitivity of Different Tissues	213

CHAPTER 11: SECTION 3

A REVIEW OF THE RADIOSENSITIVITY OF THE TISSUES IN BONE 215

11(3).1	Introduction	215
11(3).2	The Location and Relative Numbers of Radiosensitive	
	Cells and of Cells not Considered to be Radiosensitive	
	in Bone and Bone Marrow	215
11(3).2.1	The Cells at Carcinogenic Risk	216
11(3).3	The Localization of Bone-seeking Radionuclides	218
11(3).3.1	Alkaline Earths	218
11(3).3.2	Plutonium and Thorium	219

11(3).3.3	Americium and the Trivalent Transuranics	220
11(3).3.4	Phosphorus and Carbon	220
11(3).4	Biological Data on Tumour Formation and Degenerative	
	Changes	220
11(3).5	Factors to be Considered in Determining the Dose	
	Limitation from Bone-seeking Radionuclides	222
11(3).6	Summary and Conclusions of ICRP 11	223
	References	224
	Table	227

228

CHAPTER 11: SECTION 4

THE BIOLOGICAL BASIS FOR DOSE LIMITATION IN THE SKIN

11(4).1	Introduction	228
11(4).2	Brief Historical Account of the Evolution of Radiation	
	Protection Standards with Special Reference to Skin	228
11(4).3	The Structure of the Skin	232
11(4).3.1	General	232
11(4).3.2	The Epidermis	232
11(4).3.3	The Skin and the Immune System	235
11(4).3.4	Melanocytes	235
11(4).3.5	The Dermis	235
11(4).3.6	The Skin Appendages	236
11(4).4	Radiation Effects on Skin	236
11(4).4.1	Pathophysiology of Radiation-induced Skin Changes	237
11(4).4.2	'Hot Particle' Irradiation	240
11(4).4.3	Irradiation by Low Energy Beta Rays and Alpha Rays	240
11(4).4.4	Field-size Effects	241
11(4).4.5	Radiation Effects on Langerhans Cells	241
11(4).4.6	Radiation Effects on Melanocytes	241
11(4).5	Experimental Radiation Carcinogenesis	242
11(4).6	Radiation-induced Skin Cancer in Humans	242
11(4).6.1	Variations in Susceptibility to Non-melanotic Skin Cancer	243
11(4).6.2	Epidemiological Studies of Skin Cancers in Irradiated	
	Populations	243
11(4).6.3	Interaction of Ionizing Radiation and UV Radiation in	
	Skin Cancer Induction	244
11(4).6.4	Genetic Susceptibility to Non-melanotic Skin Cancer	245
11(4).6.5	Lethality of Radiation-induced Skin Cancers	245
11(4).6.6	Variations in Risk with Respect to Body Site Irradiated	245

11(4).6.7	Choice of Skin Depth Appropriate for Skin Dosimetry	246
11(4).6.8	Shape of the Dose-Response Curve for Radiation-induced	240
	Skin Cancer	247
11(4).6.9	Relative Risk vs. Absolute Risk Models	247
11(4).6.10	Numerical Values for Risk of Radiation-induced Skin	
	Cancer	247
11(4).6.11	Life-time Risk Estimates	248
11(4).7	Dose Limits and the Factors influencing Risk Estimates	250
11(4).7.1	Acute Exposure of Large Areas: Deterministic Effects	250
11(4).7.2	Partial Body Skin Exposures	251
11(4).7.3	'Hot Particle' Exposures	252
	References	252
	Table	258

CHAPTER 12: SECTION 1

HEREDI	FARY (OR GENETIC) EFFECTS OF RADIATION	259
12(1).1	Introduction	259
12(1).2	Methods for Estimation of Radiation-induced Hereditary Disorders	260
12(1).3	Classification and Prevalence of Naturally Occurring Genetic Disorders	262
12(1).4	ICRP's Current Estimates	263
	References	265
	Tables	266

CHAPTER 12: SECTION 2

THE RBE FOR HIGH LET RADIATIONS WITH RESPECT		
ΤΟ Μυτά	GENESIS	271
12(2).1	Introduction	271
12(2).2	Present and Potential Human Exposure to High LET	
	Radiations	271
12(2).3	A Note on LET	272
12(2).4	Results of Recent Studies on Mutagenesis using High	
	LET Radiations	272
12(2).4.1	Types of Studies	272
12(2).4.2	Results	273
12(2).5	Conclusions	275
	References	275
	Table	277

APPENDIX 12(2).1

DOSES I MAN-M	FROM RADIATION SOURCES, NATURAL AND	279
	Tables	280
CHAPTER	R 13	
EFFECT	S OF RADIATION ON THE EMBRYO AND FETUS	283
13.1	Introduction	283
13.2	Lethal Effects on the Embryo	283
13.3	Malformations	284
13.4	Effects on the Brain	284
13.5	Prenatal Development of the Primate Brain and Cerebral	
	Adnexa	285
13.6	Developmental Disorders of the Central Nervous System	286
13.7	Effects of Radiation Exposure on the Developing Human	
	Brain	286
13.7.1	Severe Mental Retardation	287
13.7.2	Small Head Size	288
13.7.3	Intelligence Tests	288
13.7.4	School Performance	289
13.7.5	Convulsions	289
13.7.6	Neuromuscular Performance	290
13.7.7	Effects on Cerebellum, Mid-brain and Brain Stem	290
13.7.8	Uncertainties	290
13.7.9	Exposure in utero: Other Human Data	291
13.8	Cancer Induction Including Leukaemia	291
	References	292

LOW DOSE RADIATION EFFECTS		295
14.1	Introduction	295
14.2	Summary of Evidence	295
14.2.1	Nuclear Sources	295
14.2.2	Occupational Exposure	297
14.2.3	Fetal Exposures	298
14.2.4	Therapeutically Irradiated Populations	299
14.2.5	Background Radiation	299

14.3	Problems in the Interpretation of the Results	300
14.4	Conclusions	301
	References	301

BIOLOGI	CAL EFFECTS OF INHALED RADIONUCLIDES	305
15.1	Introduction	305
15.2	Deposition of Inhaled Radionuclides	306
15.3	Biological Effects	306
15.3.1	Alpha Emitters	306
15.3.2	Beta-gamma Emitters	309
15.4	Tissues at Risk	312
15.4.1	General Remarks on the Concept of Critical Tissue and	
	Tissue Components	312
15.4.2	Criteria for Defining Tissues at Risk	313
15.4.3	Tissues and Cell Types Apt to be Damaged	313
15.4.4	Nasal Passages	313
15.4.5	Epithelia of the Tracheobronchial and Pulmonary	
	Regions, Pneumocytes, and Alveolar Macrophages	314
15.4.6	Blood and Lymph Vessel Constituents of the Lungs,	
	Especially Endothelial Cells	314
15.4.7	Connective Tissue Constituents and Other Cell Types	
	of Lungs	315
15.4.8	Regional Lymph Nodes	315
15.4.9	Relationship of Cellular Kinetics to Damage Caused by	
	Inhaled Radionuclides	316
15.4.10	Interaction of Radioactive Particles with Cells	316
15.4.11	Tissues and Cells at Risk Based on Type of Neoplasia	
	Produced	317
15.5	Additional Factors to be Considered	317
15.6	Dose-effect Relationships	317
15.7	Hot Particles	319
15.8	Summary and Conclusions	319
15.8.1	Biological Response to Inhaled Radionuclides	319
15.8.2	Tissues and Cells at Risk	320
15.8.3	Risk Calculation	321
15.8.4	Equal Effectiveness Ratio for Alpha Radiation	321
	References	322

PART III: INTERNAL AND EXTERNAL DOSIMETRY

QUANTI	TIES USED IN RADIOLOGICAL PROTECTION	327
16.1	Introduction	327
16.2	Group I: Radiometric Quantities	328
16.2.1.	Activity	328
16.2.2.	Particle Flux	328
16.2.3.	Particle Fluence	328
16.2.4.	Energy Fluence	329
16.3	Group II: Dosimetric Quantities	329
16.3.1	Mass Energy Transfer Coefficient	329
16.3.2	Mass Energy Absorption Coefficient	329
16.3.3	Total Mass Stopping Power	329
16.3.4	Linear Energy Transfer or Restricted Linear Collision	
	Stopping Power	330
16.3.5	Mean Energy Expended in a Gas per Ion Pair Formed	331
16.3.6	Energy Imparted	331
16.3.7	Absorbed Dose	332
16.3.8	Organ Dose	332
16.3.9	Specific Energy	332
16.3.10	Exposure	333
16.3.11	Air Kerma	333
16.3.12	Lineal Energy	333
16.3.13	Quality Factor	334
16.3.14	Radiation Weighting Factor	334
16.3.15	Equivalent Dose in an Organ or Tissue	335
16.3.16	Tissue Weighting Factors and Effective Dose	337
16.3.17	Committed Tissue Or Organ Equivalent Dose and	
	Committed Effective Dose	338
16.4	Group III: ICRU Quantities for Environmental and	
	Individual Monitoring	340
16.4.1	Environmental Monitoring	340
16.4.2	Ambient Dose Equivalent	341
16.4.3	Directional Dose Equivalent	341
16.4.4	Absorbed Dose Index	341
16.4.5	Dose Equivalent Index	341
16.4.6	Individual Monitoring	342
16.4.7	Individual Dose Equivalent, Penetrating	342
16.4.8	Individual Dose Equivalent, Superficial	342

16.5	Group IV: Quantities Connected with Populations	343
16.5.1	Collective Equivalent Dose	343
16.5.2	Collective Effective Dose	343
16.5.3	Per Caput Equivalent Dose	343
16.5.4	Critical Groups	344
16.5.5	Dose Commitment (for Populations)	344
16.6	Group V: Other Quantities	344
16.6.1	Secondary Limits	344
16.6.2	Derived Limits	345
16.6.3	Authorized Limits	346
16.7	Other Quantities Used by ICRP in a General Sense	346
	References	346
	Table	347

CHAPTER 17: SECTION 1

REFERENCE MAN: INTRODUCTION

ANATOMICAL VALUES FOR REFERENCE MAN

17(1).1	Concept of the Reference Man	349
17(1).2	Historical Development	349
17(1).3	Definition, Importance and Limitations of Reference Man	350
17(1).4	Scope of ICRP 23	350

349

352

CHAPTER 17: SECTION 2

17(2).1	Introduction	352
17(2).2	Total Body	352
17(2).2.1	Weight (W), Length (L), and Surface Area (SA) of the	
	Total Body and Regions of the Body	352
17(2).2.2	Growth Patterns for Regions of the Total Body during	
	Post-natal Life	353
17(2).2.3	Composition of the Total Body	353
17(2).2.4	Body Cell Mass	353
17(2).2.5	Total Number of Cells in Body	353
17(2).2.6	Total Body Water (TBW), Extracellular Water (ECW),	
	and Intracellular Water (ICW)	353
17(2).2.7	Total Blood, Erythrocytes, Leukocytes, Platelets	
	and Plasma	355
17(2).2.8	Body Fat, Adipose Tissue and Lean Body Mass	355
17(2).2.9	Reticuloendothelial System	355

17(2).2.10	Connective Tissue	356
17(2).3	Integumentary System	356
17(2).3.1	Skin and Hypodermis	356
17(2).3.2	Hair and Nails	356
17(2).4	Skeleton, Cartilage, Nonskeletal Dense Connective Tissue	
	(Tendons, Fascia, Periarticular Tissue), and Teeth	356
17(2).4.1	Skeleton	357
17(2).5	Haematopoietic System, Lymphatic System, Spleen,	
	and Thymus	357
17(2).5.1	Haematopoietic System	357
17(2).5.2	Bone Marrow	358
17(2).5.3	Lymphatic System	359
17(2).5.4	Spleen	359
17(2).5.5	Thymus	360
17(2).6	Skeletal Muscle System	360
17(2).7	Cardiovascular System	360
17(2).7.1	Heart	361
17(2).7.2	Blood Pool	361
17(2).8	Digestive System	361
17(2).8.1	Mouth	361
17(2).8.2	Salivary Glands	362
17(2).8.3	Pharynx	362
17(2).8.4	Tonsillar Ring	362
17(2).8.5	Esophagus	362
17(2).8.6	Stomach	362
17(2).8.7	Intestinal Tract	363
17(2).8.8	Liver	364
17(2).8.9	Gallbladder	364
17(2).8.10	Pancreas	364
17(2).9	Respiratory System	365
17(2).9.1	Nose	365
17(2).9.2	Larynx	365
17(2).9.3	Trachea	366
17(2).9.4	Lungs	366
17(2).9.5	Bronchial Tree	367
17(2).9.6	Airways of the Pulmonary Region	367
17(2).9.7	Pleura	368
17(2).10	Uro-genital System	368
17(2).10.1	Kidneys	368
17(2).10.2	Ureters	369
17(2).10.3	Urinary Bladder	369
17(2).10.4	Urethra	370

17(2).10.5	Testes	370
17(2).10.6	Epididymes	371
17(2).10.7	Prostate Gland	371
17(2).10.8	Seminal Vesicles	371
17(2).10.9	Ovaries	371
17(2).10.10	Fallopian Tubes	372
17(2).10.11	Uterus	372
17(2).10.12	Vagina	373
17(2).10.13	Breast	373
17(2).11	Endocrine System	373
17(2).11.1	Thyroid Gland	373
17(2).11.2	Parathyroid Gland	375
17(2).11.3	Adrenal Glands	375
17(2).11.4	Pineal Gland (Epiphysis)	375
17(2).11.5	Pituitary Gland (Hypophysis)	375
17(2).12	Central Nervous System	376
17(2).12.1	Brain	376
17(2).12.2	Spinal Cord	377
17(2).13	Special Sense Organs	377
17(2).13.1	Eye	377
17(2).13.2	Ear	380
17(2).14	Pregnancy	380
17(2).14.1	Duration of Pregnancy or Time of Gestation	380
17(2).14.2	Components in Gained Weight During Pregnancy	380
17(2).14.3	Placenta	381
	References	381
	Tables	394

CHAPTER 17: SECTION 3

GROSS AND ELEMENTAL CONTENT OF REFERENCE MAN	403
References	404
Tables	405

CHAPTER 17: SECTION 4

PHYSIOLOGICAL DATA FOR REFERENCE MAN		407
17(4).1	Introduction	407
17(4).2	Energy Expenditure	408

17(4).3	Respiratory Standards	408
17(4).3.1	Definitions	408
17(4).3.2	Changes in Respiratory Parameters under Different	
	Conditions	409
17(4).4	Daily Dietary Intake and Principal Nutrient Content	
	of Diet	409
17(4).5	Model for Water Balance	409
17(4).5.1	Water Intake	410
17(4).5.2.	Water Loss	410
17(4).6	Effect of Pregnancy and Lactation	411
17(4).7	Summary of Model Values for Daily Balance of Elements	411
	References	412
	Tables	414

CHAPTER 17. SECTION 5

SPECIFIC ABSORBED FRACTIONS OF PHOTON ENERGIES FOR REFERENCE MAN	420
References	421
Tables	423

CHAPTER 18

INTERNAL DOSIMETRY: INTRODUCTION TO ICRP 30 METHODOLOGY 429

18.1	Introduction	429
18.2	Secondary and Derived Limits for the Control of Internal	
	Dose	434
18.2.1	Annual Limit on Intake (ALI)	434
18.2.2	Derived Air Concentration (DAC)	435
18.2.3	Derived Air Concentration for Submersion	436
18.3	Revisions to ICRP 30 Carried out in ICRP 61	437
18.3.1	Dosimetric Data	437
18.3.2	Secondary Limits	438
18.3.3	Conclusions of ICRP 61	438
	References	439

CHAPTER 19

METHODOLOGIES FOR COMPUTATION OF COMMITTED DOSE EQUIVALENT, ANNUAL LIMIT ON INTAKE AND DERIVED AIR CONCENTRATION

10.1		
19.1	Introduction	441
19.2	Committed Dose Equivalent	441
19.3	Cellular Distribution of Dose	442
19.4	Specific Effective Energy (SEE)	443
19.4.1	Decay Schemes	443
19.4.2	Masses of Organs in the Body	444
19.5	Number of Transformations in a Source Organ over	
	50 Years	444
19.6	Summary of the Mathematical Treatment for Solution to	
	the Compartmental Models	446
19.6.1	Illustrative Solution for Integrated Activities in	
	a Two-chain Compartment	448
19.7	Annual Limit on Intake (ALI)	449
19.8	Derived Air Concentration (DAC)	450
19.9	Use and Limitations of the Dosimetric Data	451
19.9.1	Precision of the Data	451
19.9.2	Assumptions Concerning Chemical and Physical Form	451
19.9.3	Assumptions Concerning Metabolic Models	451
19.9.4	Assumptions Concerning the Exposed Individual	452
19.9.5	Assumptions Concerning Chemical Toxicity	452
19.9.6	Assumptions Concerning Daughter Radionuclides	452
19.9.7	Exposure to a Mixture of Radionuclides in Inhalation,	
	Ingestion and Submersion	453
	References	454

CHAPTER 20

METHOD OF PRESENTATION OF THE DATA IN ICRP PUBLICATION 30, ITS SUPPLEMENTS AND ICRP PUBLICATION 38

455

441

20.1	ICRP Publication 30 and Its Supplements	455
20.1.1	Tables of Data	456
20.1.2	Specific Effective Energy	456
20.1.3	Number of Transformations	456
20.2	ICRP Publication 38	457
	References	459

CHAPTER 21

DOSIME	TRIC MODEL FOR THE RESPIRATORY SYSTEM	461
21.1	Introduction	461
21.2	Deposition and Retention Model	462
21.3	Calculation of Committed Dose Equivalent, H_{so} ,	
	in the Lung	465
21.4	Particle Size Correction	466
21.5	Proposed New ICRP Lung Model	466
	References	469
	Table	470

CHAPTER 22

22.1	Introduction	471
22.2	Dosimetric Model	471
22.3	Calculations of Committed Dose Equivalent, H_{s0} , to Sections of the GI Tract	473
	References	475
	Table	476

DOSIMETRIC MODEL FOR THE GASTROINTESTINAL TRACT 471

CHAPTER 23: SECTION 1

DOSIMETRIC MODEL FOR BONE 477

23(1).1	Introduction	477
23(1).2	Calculations of Committed Equivalent Doses, H_{so} , to	
	Cells on Bone Surfaces and Active Red Marrow	478
23(1).2.1	Estimates of Absorbed Fractions in Skeletal Tissues	478
23(1).2.2	Number of Transformations in Trabecular and	
	Cortical Bone	481
	References	481
	Tables	483

CHAPTER 23: SECTION 2

ALKALINE EARTH METABOLISM IN ADULT MAN		484
23(2).1 23(2).1.1	ICRP 20 Model for Alkaline Earth Metabolism The Model	484 484

23(2).1.2	Terminology	485
23(2).1.3	List of Data	488
23(2).1.4	Results	489
23(2).1.5	Intended Uses	489
23(2).1.6	Comparison with Existing Models	489
23(2).2	Introduction to the ICRP 20 Model	490
23(2).3	Non-mathematical Description of the Model	491
23(2).3.1	Postulates of the New Model	491
23(2).3.2	Sub-division of Activity within the Model	494
23(2).4	How to Use Results to Calculate the Doses	495
23(2).5	Comparison of Model with Data for Normal Man	496
23(2).5.1	Bone Data	496
23(2).5.2	Data for Calcium, Strontium, Barium and Radium	497
23(2).6	Results	497
23(2).7	Need for More Data	498
	References	498
	Tables	500

CHAPTER 23: SECTION 3

THE METABOLISM OF PLUTONIUM AND OTHER ACTINIDES 505

23(3).1	Introduction	505
23(3).2	The Chemistry of Plutonium and Related Elements	506
23(3).3	Entry of Actinides by Inhalation	508
23(3).3.1	Plutonium Compounds	509
23(3).3.2	Conclusions	511
23(3).4	Entry of Actinide Elements via the Gastro-intestinal Tract	512
23(3).4.1	Plutonium Absorption in Adult Animals	512
23(3).4.2	Plutonium Absorption in Neonatal Animals	514
23(3).4.3	Absorption of Thorium	514
23(3).4.4	General Discussion and Conclusions on Fractional	
	Absorption Values to be Used for Radiation Protection	
	Purposes	514
23(3).5	The Penetration of Plutonium and Other Actinides	
	Through the Intact Skin	516
23(3).5.1	Conclusions Relevant to Radiation Protection	517
23(3).6	Distribution and Retention of Systemically Absorbed	
	Actinides	517
23(3).6.1	Human Data on Actinide Distribution and Retention	517
23(3).6.2	Experimental Injection Studies on Humans	518
23(3).6.3	Occupational Exposure Studies	518

23(3).6.4	Fallout Exposure Studies	518
23(3).6.5	Data on Actinide Distribution and Retention	519
23(3).6.6	Gonads	519
23(3).6.7	Cross-placental Transport	520
23(3).7	General Conclusions	520
23(3).7.1	Inhaled Actinides	520
23(3).7.2	Effect of Chemical Form	520
23(3).7.3	Absorption from the Gastro-intestinal Tract	520
23(3).7.4	Retention in Liver and Bone	521
23(3).7.5	Embryo and Fetus	522
23(3).7.6	Microdistribution in the Skeleton	522
23(3).7.7	Effect of the Proposed Changes in f_1 and Retention	
	Half-time in Liver and Bone on ALIs	522
	References	523
	Tables	527

CHAPTER 23: SECTION 4

REVISED	BONE MODEL FOR ACTINIDES	529

23(4).1	Introduction	529
23(4).2	Age-specific Models for Plutonium, Neptunium and	
	Americium	529
23(4).3	Plutonium Model	529
23(4).3.1	Initial Distribution of Plutonium	531
23(4).3.2	Uptake and Translocation by the Skeleton	531
23(4).3.3	Plutonium in Liver	532
23(4).3.4	Plutonium in Kidneys, Other Soft Tissues and Excretion	532
23(4).3.5	Plutonium in Gonadal Tissues	533
23(4).3.6	Recycling of Activity	533
23(4).4	Modifications to the Plutonium Model for Application	
	to Americium	533
23(4).5	Modifications of the Model for Application to Neptunium	534
	References	534

CHAPTER 24

DOSIMETRIC MODEL FOR SUBMERSION IN A	
RADIOACTIVE CLOUD	

24.1	Introduction	537
24.2	Relative Magnitudes of Dose-equivalent Rates from	
	External and Internal Radiation	537

537

24.2.1	Tritium	539
24.2.2	Radon and Thoron	539
24.2.3	The Noble Gases	539
24.3	Dose Equivalent Rates in Body Tissues from Submersion	540
24.3.1	Photon Emitters	540
24.3.2	Electrons and Beta Emitters	541
24.4	Derived Air Concentration (DAC) for Submersion	541
	References	542

CHAPTER 25

DOSIMETRIC DATA AND ALI VALUES FOR SOMEIMPORTANT RADIONUCLIDES543

References	544
Tables	546

CHAPTER 26

AGE-DEPENDENT DOSES TO MEMBERS OF THE PUBLIC FROM INTAKE OF SOME IMPORTANT RADIONUCLIDES 579

		570
26.1	Introduction	579
26.2	Dosimetric Models	580
26.3	Biokinetic Models	581
26.3.1	GI Absorption	581
26.3.2	Absorption in Infants	581
26.3.3	Different Models Used	582
26.4	Results of Dosimetric Computations given in ICRP 56	582
	References	583

CHAPTER 27

RADIONUCLIDE RELEASES INTO THE ENVIRONMENT: ASSESSMENT OF DOSES TO MAN

27.1	Introduction	597
27.1.1	Types of Release	598
27.1.2	Exposure Pathways	599
27.1.3	Pre-operational Assessment of Releases	601
27.2	Methods for Assessing the Consequences of Planned	
	and Unplanned Releases	602

597

27.2.1	Forming the Block Diagram	602
27.2.2	Identifying and Determining Translocation Parameters	603
27.2.3	Predicting the Response of the System	604
27.2.4	Analyzing the Response of the Model	607
27.3	Use of Dose Predictions in Decision Making	608
27.3.1	Planned Releases	608
27.3.2	Radiological Protection Aspects of Siting of Nuclear	
	Installations	608
27.4	Exemplification of Dose Prediction Models	609
27.4.1	Introduction	609
27.4.2	Continuous Atmospheric Release of ¹³¹ I to a Terrestrial	
	Environment: CF Method	610
27.4.3	Steps in the Computational Process	610
27.4.4	Results	612
27.4.5	Sensitivity and Robustness Analysis	613
27.4.6	Release of ¹³⁷ Cs to an Aquatic Environment: CF Method	613
27.5	Collective Dose Prediction Models	613
	References	614
	Tables	615

DATA FOR USE IN PROTECTION AGAINST EXTERNAL RADIATION

28.1	Introduction	619
28.1.1	Guidelines for Monitoring	620
28.1.2	Limitations of Data	620
28.2	Determination of Dose Distributions in the Human Body	620
28.2.1	Principal Factors	620
28.2.2	Quantities and Relationships	620
28.2.3	Phantoms of the Human Body	621
28.2.4	Transport Calculations	622
28.2.5	Irradiation Geometries	623
28.3	Conversion Coefficients for Idealized Geometries	625
28.3.1	Recommended Coefficients	625
28.3.2	Data for Photons	625
28.3.3	Data for Neutrons	626
28.3.4	Data for Electrons	627
28.3.5	Other Data	627
28.4	Application of the Conversion Quantities	627
	References	628
	Tables	632

PART IV: OPERATIONAL RADIATION PROTECTION INCLUDING MONITORING

CHAPTER 29

GENERAL PRINCIPLES OF MONITORING FOR RADIATION PROTECTION OF WORKERS

643

29.1	Introduction	643
29.2	The Functions of Monitoring	646
29.2.1	Monitoring of the Workplace	646
29.2.2	Individual Monitoring	646
29.3	Monitoring of the Workplace for External Radiation	647
29.4	Monitoring of the Workplace for Surface Contamination	648
29.5	Monitoring for Air Contamination	649
29.6	Individual Monitoring for External Radiation	650
29.6.1	Situations not Requiring Routine Individual Monitoring	651
29.6.2	Special Monitoring for Accident Situations	653
29.7	Monitoring for Skin Contamination	654
29.8	Individual Monitoring for Internal Contamination	654
29.9	Quality Assurance	656

CHAPTER 30

INDIVIDUAL MONITORING FOR INTAKES OF RADIONUCLIDES BY WORKERS: DESIGN AND INTERPRETATION 657

30.1	Introduction	657
30.2	Derived Levels	658
30.3	Methods of Individual Monitoring	658
30.3.1	Body Activity Measurements	658
30.3.2	Excreta Monitoring	659
30.4	Monitoring Programmes	660
30.4.1	Use of Derived Reference Levels in Routine and Special	
	Monitoring	661
30.5	Implementation	662
30.5.1	Routine Monitoring	662
30.5.2	Special Monitoring	662
30.5.3	Mixture of Radionuclides	662
30.5.4	Physical and Chemical Characteristics of the Contaminant	663
30.5.5	Deviations from Standard Models	663
30.5.6	Routes of Entry other than Inhalation	663

30.5.7	Effect of Medical Intervention	664
30.6	Monitoring Data for Individual Radionuclides	664

CHAPTER 31

PRINCIPLES AND GENERAL PROCEDURES FOR HANDLING EMERGENCY AND ACCIDENTAL EXPOSURES OF WORKERS 667

31.1	Introduction	667
31.2	Responsibilities of Management	667
31.3	Indications for Action	668
31.4	Physical, Clinical and Biological Data for Assessing	
	Severity of Exposure	668
31.4.1	Information from Workers	668
31.4.2	External Contamination	668
31.4.3	External Exposure	669
31.4.4	Internal Contamination	669
31.4.5	Clinical Observations and Biological Investigations for	
	External Exposure	670
31.5	Indications for Action	672
31.5.1	External Exposure	672
31.5.2	Internal Exposure	673
31.6	Principles of Urgent Medical Care	673
31.6.1	Whole Body Exposures	673
31.6.2	Partial Body Exposures	674
31.6.3	External Contamination	674
31.6.4	Internal Contamination	675
31.7	Administrative Action Following an Abnormal Exposure	675
31.8	Organization of Medical Services in Anticipation of	
	Abnormal Exposures	676
31.8.1	First Aid at Site	676
31.8.2	Treatment in 'Local' Medical Services	676
31.8.3	Treatment at a Specialized Facility	677
	References	677
	Tables	678

CHAPTER 32

PRINCIPLES OF MONITORING FOR THE RADIATION PROTECTION OF THE POPULATION

681

32.2	Explanation of Terms	682
32.3	Modelling and Monitoring	683
32.3.1	The Use of Models	683
32.3.2	External Exposure Models	684
32.3.3	Environmental Transfer Models	684
32.3.4	Metabolic and Dosimetric Models	684
32.3.5	Interaction between Monitoring and Modelling	684
32.4	General Objectives of Monitoring	685
32.5	The Requirements for Monitoring Programmes	685
32.6	Monitoring of the Environment	686
32.6.1	Person-related Environmental Monitoring Programmes	688
32.6.2	Design of Environmental Monitoring Programmes	688
32.7	Monitoring of Individuals in the Population	688
32.8	Quality Assurance	689

CHAPTER 33

PROTECTION OF THE PUBLIC IN THE EVENT OF MAJORRADIATION ACCIDENTS: PRINCIPLES FOR PLANNING691

33.1	Introduction	691
33.2	Basic Principles for Intervention	692
33.3	Application of the Principles for Intervention	693
33.4	Categorization of Emergencies	694
33.4.1	Exposure Pathways	694
33.4.2	Temporal and Spatial Aspects	695
33.5	Derivation of Intervention Levels	695
33.5.1	Intervention at the Source	696
33.5.2	Control of Access	696
33.5.3	Sheltering	696
33.5.4	Evacuation	697
33.5.5	Administration of Stable Iodine	698
33.5.6	Personal Decontamination	699
33.5.7	Injury Management	699
33.5.8	Intervention in the Food Chain and Drinking Water	699
33.5.9	Relocation	701
33.5.10	Decontamination of Structures and Land Surfaces	702
33.6	Protection of Individuals Involved in Intervention	702
33.7	Emergency Response Planning	703
33.7.1	General	703
33.7.2	The Role of Intervention in Emergency Planning	703

33.7.3	Lost Sources	703
33.8	Summary of Recommended Intervention Levels	704
	References	704
	Tables	705

PRINCIPLES FOR LIMITING EXPOSURE OF THE PUBLIC TO NATURAL SOURCES OF RADIATION 709

34.1	Introduction	709
34.2	Existing Exposure Situations	710
34.3	Future Exposure Situations	711

CHAPTER 35

PROTECTION AGAINST IONIZING RADIATION IN THE		
TEACHING OF SCIENCE		713
35.1	Introduction	713
35.2	Guidelines	713
35.3	Dose Limitation for Pupils	714
35.4	Programme of Protection	714
35.4.1	X-ray Apparatus and Sources	715
35.4.2	Sealed Radioactive Sources	715
35.4.3	Unsealed Radioactive Sources	716
	Tables	717

CHAPTER 36

RADIATION PROTECTION PRINCIPLES FOR THE DISPOSAL OF SOLID RADIOACTIVE WASTE

36.1	Introduction	719
36.2	Radioactive Wastes and Management Options	720
36.2.1	Waste Characteristics	720
36.2.2	Waste Management Options	721
36.3	Characteristics of Release Scenarios	723
36.3.1	Mechanism of Radionuclide Release and Dispersion	723
36.3.2	Probabilistic Events	724
36.4	Individual Limits	725

36.4.1	Individual Dose Limits	725
36.4.2	Individual Risk Limits and Risk Upper Bounds	726
36.5	Application of Individual Requirements to A Source	727
36.5.1	Source and Risk Upper Bounds	727
36.5.2	Assessment of Individual Risks	728
36.6	Optimization of Protection	732
36.6.1	Realistic Assessments	733
36.6.2	International Aspects	733
36.6.3	Time Scales	733
36.6.4	Application to Probabilistic Events	733
36.7	Exemption Rules	734
36.8	Operational Aspects	735
36.8.1	Protection of Workers	735
36.8.2	Monitoring for Protection of the Public during the	
	Pre-closure Period	735
36.8.3	Institutional and Technical Control during the	
	Post-closure Period	735
36.9	General Conclusions	736
	References	736

PART V: RADIATION PROTECTION IN MEDICAL EXPOSURES

CHAPTER 37

BASIC APPROACH TO RADIATION PROTECTION IN MEDICAL APPLICATIONS

37.1	Introduction	737
37.2	Basic Approach of ICRP 60	738
37.2.1	Medical Exposure	738
37.2.2	The System of Protection in Medical Exposure	739

APPENDIX 37.1

RADIOLOGICAL PROTECTION IN BIOMEDICAL RESEARCH 741

Introduction	741
Basic Features of the Helsinki Declaration	741
Başic Principles	741

Protection in Biomedical Research Involving Radiation	
Exposure of Human Beings	742
Risk Assessment	743
Principles of Research Design	743
Project Evaluation	744
Procedures for Project Evaluation and Responsibilities	745
References	745
Table	746

GENER	AL ASPECTS OF THE RADIATION PROTECTION	
PROGR	PROGRAMME IN MEDICAL APPLICATIONS	
38.1	The Control of Radiation Hazards	747
38.1.1	External Radiation	747
38.1.2	Control of Contamination	747
38.2	Overall Organization	748
38.3	Education and Training	748
38,4	Planning and Design	749
38.5	Classification of Areas	749
38.6	Radiation Monitoring Programme	750
38.6.1	Individual Monitoring	750
38.6.2	Environmental Monitoring of the Workplace	751
38.7	Medical Surveillance	751
CHAPTER	39	
DADIAT	ION DROTECTION IN DIA CNOSTIC DADIOLOCY	

RADIATION PROTECTION IN DIAGNOSTIC RADIOLOGY		753
39.1	Introduction	753
39.2	Clinical Judgement and Administrative Practices	754
39.2.1	Responsibilities of the Referring Physician,	
	Radiologist and Radiographer	754
39.3	Planning and Design	755
39.4	Technical and Physical Factors	757
39.4.1	General: Avoidance of Unnecessary Doses	757
39.4.2	X-ray Tube Housing	758
39.4.3	Field Size	758
39.4.4	Shielding of Organs	758
39.4.5	Distance of the Focal Spot to the Skin (FSD) or	
	Image Receptor	759

39.4.6	Tube Voltage	759
39.4.7	Voltage Waveform	759
39.4.8	Filtration	759
39.4.9	Carbon Fibre Materials	760
39.4.10	Control of Irradiation and Recording Time	760
39.4.11	Control of Scatter to the Recording System	760
39.4.12	Intensifying Screens and Radiographic Films	760
39.4.13	Film Processing	760
39.4.14	Reduction in Repeat Exposures	761
39.4.15	Fluoroscopy	761
39.4.16	Mobile Radiography	763
39.4.17	Mobile Fluoroscopy	763
39.4.18	Photofluorography	763
39.4.19	High Technology Equipment	763
39.5	Specific Types of X-ray Examinations	763
39.5.1	Chest Examinations	763
39.5.2	X-ray Examinations during Pregnancy	764
39.5.3	X-ray Examination of Women of Reproductive Capacity	764
39.5.4	Obstetric Radiography	764
39.5.5	Other Examinations during Pregnancy	765
39.5.6	Paediatric Radiology	765
39.5.7	Mammography	765
39.5.8	Dental Radiography	765
39.5.9	Examinations with Mobile Equipment in Wards and	
	Operation Theatre	766
39.5.10	Low Yield Examinations	767
39.6	X-ray Examinations not Directly Associated with Illness	767
39.6.1	X-ray Examinations in Health Assessment	767
39.6.2	X-ray Examinations in Screening for Specific Diseases	767
39.6.3	X-ray Examinations for Occupational, Medico-legal or	
	Insurance Purposes	768
39.7	Absorbed Doses in Body Tissues	768
	References	769
	Tables	770

RADIA	TION PROTECTION IN RADIOTHERAPY	773
40.1	Introduction	773
40.2	Justification, Optimization and Dose Limitation in the	
	Context of Radiotherapy	775

40.3	Categories of Radiotherapy: Brachytherapy and External	
	Beam Therapy	776
40.4	Brachytherapy	776
40.4.1	Occupational Exposures in Brachytherapy	777
40.4.2	Planning, Design and Operational Procedures in	
	Brachytherapy	778
40.5	External Beam Therapy	782
40.5.1	Planning and Design	782
40.5.2	Emergency Procedures	783
40.5.3	Equipment Specification in External Beam Therapy	783
40.6	Operational Procedures	787
40.6.1	Patient Care	787
40.6.2	Workers	787
40.7	Ancillary Equipment for Radiotherapy	787
40.8	Accuracy of Dose Delivery	788
40.8.1	Dosimetric Considerations	789
40.8.2	Treatment Planning and Optimization	789
40.8.3	Performance of Treatment	789
40.9	Absorbed Doses Inside and Outside the Useful Beam	790
40.9.1	Doses to Tissues within the Useful Beam	790
40.9.2	Doses to Tissues Outside the Direct Beam	790
40.10	Radiation Response	791
40.11	Risks to Specific Organs and Tissues from Radiotherapy	794
40.12	Organization and Planning of Radiation Oncology Services	794
40.13	Medical Research Involving Radiotherapy	795
	References	795
	Table	796

APPENDIX 40.1

PROTECTION OF THE WORKER IN BALNEOTHERAPY 797

CHAPTER 41

RADIATION PROTECTION IN NUCLEAR MEDICINE		799
41.1	Introduction	799
41.2	Guidelines to Good Clinical Practice	799
41.3	General Principles of Planning and Design	800
41.3.1	Radiotoxicity Classification	801
41.4	Basic Principles of Design	801

41.4.1	Requirements and General Principles of Design	801
41.4.2	Technical Details of Design	802
41.5	Recommendations for Diagnostic Uses	807
41.6	Recommendations for Therapeutic Uses	808
41.7	Recommendations for <i>in vitro</i> Uses	808
41.8	Miscellaneous	809
41.8.1	Surgery	809
41.8.2	Autopsy, Cremation, Embalming	809
41.9	Technical Aspects of Patient Protection in Diagnostic	
	Applications	809
41.9.1	Women of Reproductive Capacity	810
41.9.2	Avoidance of Pregnancy after a Diagnostic Procedure	810
41.9.3	Pregnant Women	810
41.9.4	Breast-feeding Women	811
41.9.5	Children	811
41.9.6	Protection of the Family	811
41.9.7	Misadministration	811
41.10	Technical Aspects of Patient Protection in Therapeutic	
	Applications	812
41.10.1	Treatment of Malignant Diseases	812
41.10.2	Treatment of Benign Diseases	812
41.10.3	Late Effects of Radiation Therapy	812
41.10.4	Pregnant Women	813
41.10.5	Women of Reproductive Capacity	813
41.10.6	Protection of the Family	813
41.10.7	Incidental Exposure of One Patient by Another	813
41.10.8	Therapeutic Misadministration	813
41.11	Education and Training	814
41.12	Radiation Doses to Patients from Radiopharmaceuticals	814
41.12.1	Introduction	814
41.12.2	General Considerations of Biokinetics and Dosimetry	815
41.12.3	Summary of Dose Tabulations	817
41.12.4	Analysis of Effective Dose (E) Tabulations	817
41.12.5	Variation of E Values with Age	819
41.12.6	Organs Getting High Doses	820
41.12.7	Variation of Organ Doses with Age	820
	References	821
	Tables	823

PART VI: EXPOSURES TO RADON, THORON AND THEIR DAUGHTER PRODUCTS

CHAPTER 42: SECTION 1

INTRODUCTION TO THE RADON EXPOSURE PROBLEM		835
42(1).1	Background	835
42(1).2	Radon in the Environment	836
42(1).3	Radon in Mines	837
CHAPTER 4	2: SECTION 2	
SPECIAL	QUANTITIES AND UNITS USED IN RADON	
EXPOSURES		
42(2).1	Potential Alpha Energy (ε_{p})	839
42(2).2	Potential Alpha Energy Concentration in Air (C_p)	839
42(2).3	Equilibrium-equivalent Concentration (EEC) in Air	840
42(2).4	Equilibrium Factor (F) in Air	840
42(2).5	Radon Daughter Exposure (E)	840
42(2).6	Potential Alpha Energy and Activity Intake by	
	Inhalation (I_{p}, I_{act})	841
	Table	842
CHAPTER 4	2: SECTION 3	
AND DESCRIPTION OF A DE		

EPIDEMIOLOGY, DOSIMETRY AND RADIATION-INDUCED LUNG CANCER RISK 843 42(3).1 Introduction 843 42(3).2 Epidemiological Approach 843 Epidemiological Studies on Populations in High 42(3).2.1 Background Radon Level Areas 845 Dosimetric approach 42(3).3 845 References 850 Tables 853

857

APPENDIX 42(3).1

OPERATIONAL RADIATION PROTECTION IN URANIUM MINES

CHAPTER 42: SECTION 4

INDOOR AND OUTDOOR RADON EXPOSURES		858
42(4).1	Radon Sources in Houses	858
42(4).1.1	Results of Surveys in Houses	859
42(4).2	Exposure Levels Indoors and Outdoors, and Risk	
	Coefficients	860
	References	861
	Table	863

CHAPTER 42: SECTION 5

LIMITING EXPOSURE OF THE PUBLIC TO RADON AND DAUGHTERS IN DWELLINGS 8		
42.(5).1	Introduction	864
42.(5).2	Existing Exposure Situations	864
42.(5).3	Future Exposure Situations	864

PART VII: OPTIMIZATION AND DECISION-MAKING IN **RADIOLOGICAL PROTECTION**

CHAPTER 43

OPTIMIZATION AND DECISION MAKING IN			
RADIOL	OGICAL PROTECTION	867	
43.1	Introduction	867	
43.2	Optimization of Protection	868	
43.3	Quantitative Decision-aiding Techniques	872	
43.3.1	Cost-effectiveness Analysis	873	
43.3.2	Cost-benefit Analysis	873	
43.3.3	Multi-attribute Utility Analysis	876	
43.3.4	Multi-criteria Outranking Analysis	876	
43.4	Quantification	877	

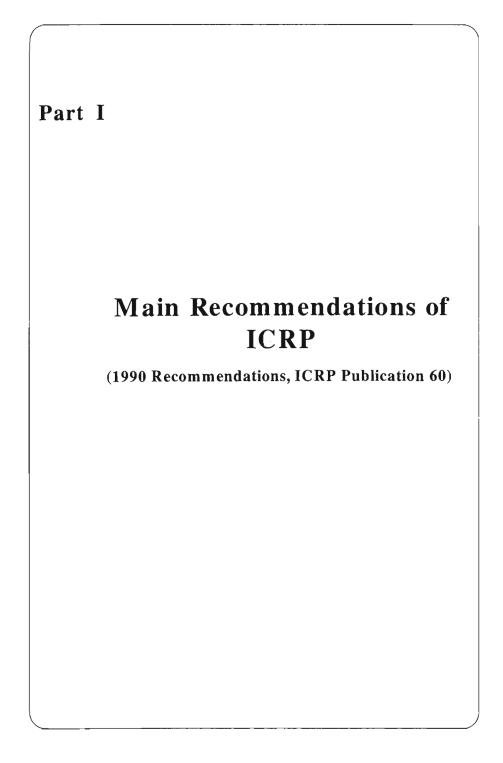
43.4 Quantification

43.5	Application of the Procedure	878
	References	879

QUANTITATIVE BASES FOR DEVELOPING A UNIFIED INDEX OF HARM

44.1	Introduction	881
44.2	Occupational Injuries	881
44.2.1	Fatal Accidents	882
44.2.2	Accidents at Work Causing Temporary Disability	882
44.2.3	Accidents Causing Permanent Disability	883
44.2.4	Time Loss from Injuries of Different Severity	883
44.2.5	Injury Rates in Occupations Involving Radiation Exposure	884
44.3	Industrial Diseases	884
44.4	Effects of Exposure to Radiation	885
44.4.1	Induction of Inherited Abnormalities	885
44.4.2	Genetically Significant Fraction of Occupational Doses	886
44.4.3	Detriment from Somatic and Genetic Risks	886
44.4.4	Deterministic Effects	886
44.4.5	Radiation Induction of Effects During Pregnancies	886
44.5	Comparison Between Radiation and Other Sources of	
	Occupational Risks	887
	References	888
	Tables	890

CHAPTER 45


BASES FOR JUDGING THE SIGNIFICANCE OF THE EFFECTS OF RADIATION

893

45.1	Introduction	893
45.2	The Meaning and Expression of 'Risk'	893
45.3	Conventions on Acceptable Risks	894
45.4	The Risk of Death	895
45.4.1	The Conditional Death Probability Rate (dp/du)	896
45.4.2	The Unconditional Death Probability Rate (dr/du)	897
45.4.3	The Probability Density of the Age at Death	897
45.4.4	Mean Loss of Life if Radiation Death Occurs (Y)	898
45.4.5	Reduction of Lifespan Expectancy (Δl)	898
45.4.6	Probabilistic 'Aging'	898

45.5	The Background Conditional Death Probability Rate $G_0(u)$	898
45.6	Primary Risk Coefficients: Increment of Death	
	Probability Rate after a Single Exposure and for	
	Prolonged Exposures	899
45.7	Summary of the Risk Description	906
45.8	A Multi-attribute Approach to the Selection of Dose	
	Limits	909
	References	911
	Tables	912
INDEX		915

INDEX

INTRODUCTION

Ionizing radiation is the term used to describe the transfer of energy through space in the form of either electromagnetic fields or subatomic particles that are capable of causing ionization in matter. Ionization is the process by which atoms lose, or sometimes gain, electrons and thus become electrically charged, being then known as ions. When ionizing radiation passes through matter, energy is imparted to the matter as ions are formed.

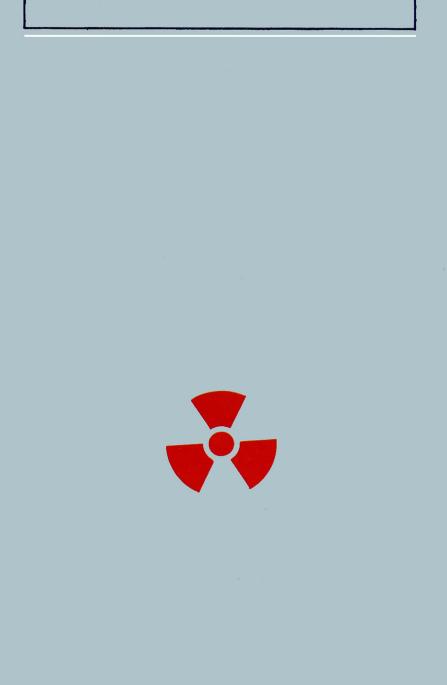
Ionizing radiations and radioactive materials have always been features of our environment, but, owing to their lack of impact on our senses, we have been aware of them only since the end of the 19th century. Since that time, we have found many important uses for them and have developed new technological processes which create them, either deliberately or as unwanted side effects. The primary aim of radiological protection is to provide an appropriate standard of protection for man from the harmful biological effects of these radiations without unduly limiting the beneficial practices giving rise to radiation exposure. This aim cannot be achieved by the use of science alone. All those concerned with radiological protection have to make value judgements about the relative importance of different kinds of risk and about the balancing of risks and benefits. In this they are no different from those working in other fields concerned with the control of hazards. The International Commission on Radiological Protection (ICRP) concerns itself with the formulation of appropriate recommendations in matters of radiation protection.

1.1 THE HISTORY OF ICRP

The International X-ray and Radium Protection Commission was established in 1928, following a decision by the Second International Congress of Radiology. In 1950 it was restructured and acquired its present name of International Commission on Radiological Protection. Over the years, ICRP, while still retaining a relationship with the International Congress of Radiology, has greatly broadened its interests to take account of the increasing uses of ionizing radiation and of practices that involve the generation of radiation and radioactive materials.

ICRP works closely with its sister body, the International Commission on Radiation Units and Measurements (ICRU), and has links with the World Health Organization, the International Atomic Energy Agency, and other United Nations bodies like the United Nations Scientific Committee on the Effects of Atomic Radiation, the United Nations Environment Programme, the International Labour Organization, the International Standards Organization, the International Electrotechnical Commission, and the International Radiation Protection Association.

ICRP recommendations are confined to protection against only ionizing radiations. (ICRP considers that non-ionizing radiation is a subject outside its own field of competence.) ICRP emphasizes that ionizing radiation needs to be treated with care rather than fear and that its risks should be kept in perspective with other risks. The procedures available to control exposures to ionizing radiation are sufficient, if used properly, to ensure that radiation remains a minor component of the spectrum of risks to which all are exposed.


ICRP believes that the standard of environmental control to protect man will ensure that other species are not put to risk. Occasionally, individual members of non-human species might be harmed, but not to the extent of endangering whole species. ICRP concerns itself with mankind's environment only with regard to the transfer of radionuclides through the environment, since this directly affects the radiological protection of man.

ICRP issued its first report in 1928. The first report in the current series, Publication 1 (1959), contained the recommendations approved in 1958. Subsequent general recommendations have appeared as Publication 6 (1964), Publication 9 (1966), and Publication 26 (1977). Publication 26 was amended and extended by Statements in 1978, 1980, 1983, 1984, 1985 and 1987. Reports on more specialized topics have appeared as intermediate and subsequent publication numbers.

A somewhat more detailed account of the history and organization of ICRP is given in Appendix 8.1.

1.2 THE DEVELOPMENT OF ICRP RECOMMENDATIONS

The method of working of ICRP has not changed greatly over the last few decades. Since there is little direct evidence of harm at levels of annual dose at or below the limits recommended by it, a good deal of scientific judgement is required in predicting the probability of harm resulting from low doses of radiation from the observed data obtained at higher

